RecursivePolynomialCategory(R, E, V)
newpoly.spad line 231
[edit on github]
A category for general multi-variate polynomials with coefficients in a ring, variables in an ordered set, and exponents from an ordered abelian monoid, with a sup operation. When not constant, such a polynomial is viewed as a univariate polynomial in its main variable w
. r
. t
. to the total ordering on the elements in the ordered set, so that some operations usually defined for univariate polynomials make sense here.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, E)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, V) -> %
- from PartialDifferentialRing(V)
- D : (%, V, NonNegativeInteger) -> %
- from PartialDifferentialRing(V)
- D : (%, List(V)) -> %
- from PartialDifferentialRing(V)
- D : (%, List(V), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(V)
- LazardQuotient : (%, %, NonNegativeInteger) -> % if R has IntegralDomain
LazardQuotient(a, b, n)
returns a^n exquo b^(n-1)
assuming that this quotient does not fail.
- LazardQuotient2 : (%, %, %, NonNegativeInteger) -> % if R has IntegralDomain
LazardQuotient2(p, a, b, n)
returns (a^(n-1) * p) exquo b^(n-1)
assuming that this quotient does not fail.
- RittWuCompare : (%, %) -> Union(Boolean, "failed")
RittWuCompare(a,b)
returns "failed"
if a
and b
have same rank w
.r
.t
. Ritt and Wu Wen Tsun ordering using the refinement of Lazard, otherwise returns infRittWu?(a, b)
.
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, E)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- from PolynomialFactorizationExplicit
- coefficient : (%, V, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, V)
- coefficient : (%, List(V), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, E, V)
- coefficient : (%, E) -> R
- from AbelianMonoidRing(R, E)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, E)
- coerce : % -> % if R has CommutativeRing
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : V -> %
- from CoercibleFrom(V)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> Polynomial(R) if V has ConvertibleTo(Symbol)
- from CoercibleTo(Polynomial(R))
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- construct : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- constructOrdered : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- content : (%, V) -> % if R has GcdDomain
- from PolynomialCategory(R, E, V)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, E)
- convert : Polynomial(R) -> % if V has ConvertibleTo(Symbol)
convert(p)
returns the same as retract(p)
.
- convert : Polynomial(Fraction(Integer)) -> % if R has Algebra(Fraction(Integer)) and V has ConvertibleTo(Symbol)
convert(p)
returns the same as retract(p)
.
- convert : Polynomial(Integer) -> % if R has Algebra(Integer) and V has ConvertibleTo(Symbol)
convert(p)
returns the same as retract(p)
.
- convert : % -> InputForm if V has ConvertibleTo(InputForm) and R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if V has ConvertibleTo(Pattern(Float)) and R has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if V has ConvertibleTo(Pattern(Integer)) and R has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- convert : % -> Polynomial(R) if V has ConvertibleTo(Symbol)
- from ConvertibleTo(Polynomial(R))
- convert : % -> String if V has ConvertibleTo(Symbol) and R has RetractableTo(Integer)
- from ConvertibleTo(String)
- deepestInitial : % -> %
deepestInitial(p)
returns an error if p
belongs to R
, otherwise returns the last term of iteratedInitials(p)
.
- deepestTail : % -> %
deepestTail(p)
returns 0
if p
belongs to R
, otherwise returns tail(p
), if tail(p)
belongs to R
or mvar(tail(p)) < mvar(p)
, otherwise returns deepestTail(tail(p))
.
- degree : % -> E
- from AbelianMonoidRing(R, E)
- degree : (%, List(V)) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(R, E, V)
- degree : (%, V) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, V)
- differentiate : (%, V) -> %
- from PartialDifferentialRing(V)
- differentiate : (%, V, NonNegativeInteger) -> %
- from PartialDifferentialRing(V)
- differentiate : (%, List(V)) -> %
- from PartialDifferentialRing(V)
- differentiate : (%, List(V), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(V)
- discriminant : (%, V) -> % if R has CommutativeRing
- from PolynomialCategory(R, E, V)
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, V, %) -> %
- from InnerEvalable(V, %)
- eval : (%, V, R) -> %
- from InnerEvalable(V, R)
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(V), List(%)) -> %
- from InnerEvalable(V, %)
- eval : (%, List(V), List(R)) -> %
- from InnerEvalable(V, R)
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- exactQuotient : (%, %) -> % if R has IntegralDomain
exactQuotient(a, b)
computes the exact quotient of a
by b
, which is assumed to be a divisor of a
. No error is returned if this exact quotient fails!
- exactQuotient : (%, R) -> % if R has IntegralDomain
exactQuotient(p, r)
computes the exact quotient of p
by r
, which is assumed to be a divisor of p
. No error is returned if this exact quotient fails!
- exactQuotient! : (%, %) -> % if R has IntegralDomain
exactQuotient!(a, b)
replaces a
by exactQuotient(a, b)
- exactQuotient! : (%, R) -> % if R has IntegralDomain
exactQuotient!(p, r)
replaces p
by exactQuotient(p, r)
.
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, E)
- extendedSubResultantGcd : (%, %) -> Record(gcd : %, coef1 : %, coef2 : %) if R has IntegralDomain
extendedSubResultantGcd(a, b)
returns [g, ca, cb]
such that g
is subResultantGcd(a, b)
and we have ca * a + cb * cb = g
.
- factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- fmecg : (%, E, R, %) -> %
- from FiniteAbelianMonoidRing(R, E)
- gcd : (%, %) -> % if R has GcdDomain
- from GcdDomain
- gcd : List(%) -> % if R has GcdDomain
- from GcdDomain
- gcd : (R, %) -> R if R has GcdDomain
gcd(r, p)
returns the gcd
of r
and the content of p
.
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
- from PolynomialFactorizationExplicit
- ground : % -> R
- from FiniteAbelianMonoidRing(R, E)
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, E)
- halfExtendedSubResultantGcd1 : (%, %) -> Record(gcd : %, coef1 : %) if R has IntegralDomain
halfExtendedSubResultantGcd1(a, b)
returns [g, ca]
if extendedSubResultantGcd(a, b)
returns [g, ca, cb]
otherwise produces an error.
- halfExtendedSubResultantGcd2 : (%, %) -> Record(gcd : %, coef2 : %) if R has IntegralDomain
halfExtendedSubResultantGcd2(a, b)
returns [g, cb]
if extendedSubResultantGcd(a, b)
returns [g, ca, cb]
otherwise produces an error.
- hash : % -> SingleInteger if R has Hashable and V has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable and V has Hashable
- from Hashable
- head : % -> %
head(p)
returns p
if p
belongs to R
, otherwise returns its leading term (monomial in the FriCAS sense), where p
is viewed as a univariate polynomial in its main variable.
- headReduce : (%, %) -> %
headReduce(a, b)
returns a polynomial r
such that headReduced?(r, b)
holds and there exists an integer e
such that init(b)^e a - r
is zero modulo b
.
- headReduced? : (%, %) -> Boolean
headReduced?(a, b)
returns true
iff degree(head(a), mvar(b)) < mdeg(b)
.
- headReduced? : (%, List(%)) -> Boolean
headReduced?(q, lp)
returns true
iff headReduced?(q, p)
holds for every p
in lp
.
- iexactQuo : (R, R) -> R if R has IntegralDomain
iexactQuo(x, y)
should be local but conditional
- infRittWu? : (%, %) -> Boolean
infRittWu?(a, b)
returns true
if a
is less than b
w
.r
.t
. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.
- init : % -> %
init(p)
returns an error if p
belongs to R
, otherwise returns its leading coefficient, where p
is viewed as a univariate polynomial in its main variable.
- initiallyReduce : (%, %) -> %
initiallyReduce(a, b)
returns a polynomial r
such that initiallyReduced?(r, b)
holds and there exists an integer e
such that init(b)^e a - r
is zero modulo b
.
- initiallyReduced? : (%, %) -> Boolean
initiallyReduced?(a, b)
returns false
iff there exists an iterated initial of a
which is not reduced w
.r
.t
b
.
- initiallyReduced? : (%, List(%)) -> Boolean
initiallyReduced?(q, lp)
returns true
iff initiallyReduced?(q, p)
holds for every p
in lp
.
- isExpt : % -> Union(Record(var : V, exponent : NonNegativeInteger), "failed")
- from PolynomialCategory(R, E, V)
- isPlus : % -> Union(List(%), "failed")
- from PolynomialCategory(R, E, V)
- isTimes : % -> Union(List(%), "failed")
- from PolynomialCategory(R, E, V)
- iteratedInitials : % -> List(%)
iteratedInitials(p)
returns []
if p
belongs to R
, otherwise returns the list of the iterated initials of p
.
- lastSubResultant : (%, %) -> % if R has IntegralDomain
lastSubResultant(a, b)
returns the last non-zero subresultant of a
and b
where a
and b
are assumed to have the same main variable v
and are viewed as univariate polynomials in v
.
- latex : % -> String
- from SetCategory
- lazyPquo : (%, %) -> %
lazyPquo(a, b)
returns the polynomial q
such that lazyPseudoDivide(a, b)
returns [c, g, q, r]
.
- lazyPquo : (%, %, V) -> %
lazyPquo(a, b, v)
returns the polynomial q
such that lazyPseudoDivide(a, b, v)
returns [c, g, q, r]
.
- lazyPrem : (%, %) -> %
lazyPrem(a, b)
returns the polynomial r
reduced w
.r
.t
. b
and such that b
divides init(b)^e a - r
where e
is the number of steps of this pseudo-division.
- lazyPrem : (%, %, V) -> %
lazyPrem(a, b, v)
returns the polynomial r
reduced w
.r
.t
. b
viewed as univariate polynomials in the variable v
such that b
divides init(b)^e a - r
where e
is the number of steps of this pseudo-division.
- lazyPremWithDefault : (%, %) -> Record(coef : %, gap : NonNegativeInteger, remainder : %)
lazyPremWithDefault(a, b)
returns [c, g, r]
such that r = lazyPrem(a, b)
and (c^g)*r = prem(a, b)
.
- lazyPremWithDefault : (%, %, V) -> Record(coef : %, gap : NonNegativeInteger, remainder : %)
lazyPremWithDefault(a, b, v)
returns [c, g, r]
such that r = lazyPrem(a, b, v)
and (c^g)*r = prem(a, b, v)
.
- lazyPseudoDivide : (%, %) -> Record(coef : %, gap : NonNegativeInteger, quotient : %, remainder : %)
lazyPseudoDivide(a, b)
returns [c, g, q, r]
such that [c, g, r] = lazyPremWithDefault(a, b)
and q
is the pseudo-quotient computed in this lazy pseudo-division.
- lazyPseudoDivide : (%, %, V) -> Record(coef : %, gap : NonNegativeInteger, quotient : %, remainder : %)
lazyPseudoDivide(a, b, v)
returns [c, g, q, r]
such that r = lazyPrem(a, b, v)
, (c^g)*r = prem(a, b, v)
and q
is the pseudo-quotient computed in this lazy pseudo-division.
- lazyResidueClass : (%, %) -> Record(polnum : %, polden : %, power : NonNegativeInteger)
lazyResidueClass(a, b)
returns [p, q, n]
where p / q^n
represents the residue class of a
modulo b
and p
is reduced w
.r
.t
. b
and q
is init(b)
.
- lcm : (%, %) -> % if R has GcdDomain
- from GcdDomain
- lcm : List(%) -> % if R has GcdDomain
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
- from LeftOreRing
- leadingCoefficient : (%, V) -> %
leadingCoefficient(p, v)
returns the leading coefficient of p
, where p
is viewed as A univariate polynomial in v
.
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, E)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, E)
- leadingSupport : % -> E
- from IndexedProductCategory(R, E)
- leadingTerm : % -> Record(k : E, c : R)
- from IndexedProductCategory(R, E)
- leastMonomial : % -> %
leastMonomial(p)
returns an error if p
is O
, otherwise, if p
belongs to R
returns 1
, otherwise, the monomial of p
with lowest degree, where p
is viewed as a univariate polynomial in its main variable.
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, E), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, E)
- listOfTerms : % -> List(Record(k : E, c : R))
- from IndexedDirectProductCategory(R, E)
- mainCoefficients : % -> List(%)
mainCoefficients(p)
returns an error if p
is O
, otherwise, if p
belongs to R
returns [p
], otherwise returns the list of the coefficients of p
, where p
is viewed as a univariate polynomial in its main variable.
- mainContent : % -> % if R has GcdDomain
mainContent(p)
returns the content of p
viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over R
.
- mainMonomial : % -> %
mainMonomial(p)
returns an error if p
is O
, otherwise, if p
belongs to R
returns 1
, otherwise, mvar(p)
raised to the power mdeg(p)
.
- mainMonomials : % -> List(%)
mainMonomials(p)
returns an error if p
is O
, otherwise, if p
belongs to R
returns [1], otherwise returns the list of the monomials of p
, where p
is viewed as a univariate polynomial in its main variable.
- mainPrimitivePart : % -> % if R has GcdDomain
mainPrimitivePart(p)
returns the primitive part of p
viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over R
.
- mainSquareFreePart : % -> % if R has GcdDomain
mainSquareFreePart(p)
returns the square free part of p
viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over R
.
- mainVariable : % -> Union(V, "failed")
- from MaybeSkewPolynomialCategory(R, E, V)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, E)
- mapExponents : (Mapping(E, E), %) -> %
- from FiniteAbelianMonoidRing(R, E)
- mdeg : % -> NonNegativeInteger
mdeg(p)
returns an error if p
is 0
, otherwise, if p
belongs to R
returns 0
, otherwise, returns the degree of p
in its main variable.
- minimumDegree : % -> E
- from FiniteAbelianMonoidRing(R, E)
- minimumDegree : (%, List(V)) -> List(NonNegativeInteger)
- from PolynomialCategory(R, E, V)
- minimumDegree : (%, V) -> NonNegativeInteger
- from PolynomialCategory(R, E, V)
- monic? : % -> Boolean
monic?(p)
returns false
if p
belongs to R
, otherwise returns true
iff p
is monic as a univariate polynomial in its main variable.
- monicDivide : (%, %, V) -> Record(quotient : %, remainder : %)
- from PolynomialCategory(R, E, V)
- monicModulo : (%, %) -> %
monicModulo(a, b)
computes a mod b
, if b
is monic as univariate polynomial in its main variable.
- monomial : (%, V, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, V)
- monomial : (%, List(V), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, E, V)
- monomial : (R, E) -> %
- from IndexedProductCategory(R, E)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, E)
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, E, V)
- multivariate : (SparseUnivariatePolynomial(%), V) -> %
- from PolynomialCategory(R, E, V)
- multivariate : (SparseUnivariatePolynomial(R), V) -> %
- from PolynomialCategory(R, E, V)
- mvar : % -> V
mvar(p)
returns an error if p
belongs to R
, otherwise returns its main variable w
. r
. t
. to the total ordering on the elements in V
.
- next_subResultant2 : (%, %, %, %) -> % if R has IntegralDomain
next_subResultant2(p, q, z, s)
is the multivariate version of the operation next_sousResultant2
from the PseudoRemainderSequence constructor.
- normalized? : (%, %) -> Boolean
normalized?(a, b)
returns true
iff a
and its iterated initials have degree zero w
.r
.t
. the main variable of b
- normalized? : (%, List(%)) -> Boolean
normalized?(q, lp)
returns true
iff normalized?(q, p)
holds for every p
in lp
.
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, E)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if V has PatternMatchable(Float) and R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if V has PatternMatchable(Integer) and R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, E, %) -> %
- from FiniteAbelianMonoidRing(R, E)
- pquo : (%, %) -> %
pquo(a, b)
computes the pseudo-quotient of a
by b
, both viewed as univariate polynomials in the main variable of b
.
- pquo : (%, %, V) -> %
pquo(a, b, v)
computes the pseudo-quotient of a
by b
, both viewed as univariate polynomials in v
.
- prem : (%, %) -> %
prem(a, b)
computes the pseudo-remainder of a
by b
, both viewed as univariate polynomials in the main variable of b
.
- prem : (%, %, V) -> %
prem(a, b, v)
computes the pseudo-remainder of a
by b
, both viewed as univariate polynomials in v
.
- primPartElseUnitCanonical : % -> % if R has IntegralDomain
primPartElseUnitCanonical(p)
returns primitivePart(p)
if R
is a gcd
-domain, otherwise unitCanonical(p)
.
- primPartElseUnitCanonical! : % -> % if R has IntegralDomain
primPartElseUnitCanonical!(p)
replaces p
by primPartElseUnitCanonical(p)
.
- prime? : % -> Boolean if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- primitiveMonomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, E, V)
- primitivePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, E, V)
- primitivePart : (%, V) -> % if R has GcdDomain
- from PolynomialCategory(R, E, V)
- primitivePart! : % -> % if R has GcdDomain
primitivePart!(p)
replaces p
by its primitive part.
- pseudoDivide : (%, %) -> Record(quotient : %, remainder : %)
pseudoDivide(a, b)
computes [pquo(a, b), prem(a, b)]
, both polynomials viewed as univariate polynomials in the main variable of b
, if b
is not a constant polynomial.
- quasiMonic? : % -> Boolean
quasiMonic?(p)
returns false
if p
belongs to R
, otherwise returns true
iff the initial of p
lies in the base ring R
.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduced? : (%, %) -> Boolean
reduced?(a, b)
returns true
iff degree(a, mvar(b)) < mdeg(b)
.
- reduced? : (%, List(%)) -> Boolean
reduced?(q, lp)
returns true
iff reduced?(q, p)
holds for every p
in lp
.
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(R, E)
- reductum : (%, V) -> %
reductum(p, v)
returns the reductum of p
, where p
is viewed as a univariate polynomial in v
.
- resultant : (%, %) -> % if R has IntegralDomain
resultant(a, b)
computes the resultant of a
and b
where a
and b
are assumed to have the same main variable v
and are viewed as univariate polynomials in v
.
- resultant : (%, %, V) -> % if R has CommutativeRing
- from PolynomialCategory(R, E, V)
- retract : Polynomial(R) -> % if V has ConvertibleTo(Symbol)
retract(p)
returns p
as an element of the current domain, if retractIfCan(p)
does not return "failed", otherwise an error is produced.
- retract : Polynomial(Fraction(Integer)) -> % if R has Algebra(Fraction(Integer)) and V has ConvertibleTo(Symbol)
retract(p)
returns p
as an element of the current domain, if retractIfCan(p)
does not return "failed", otherwise an error is produced.
- retract : Polynomial(Integer) -> % if R has Algebra(Integer) and V has ConvertibleTo(Symbol)
retract(p)
returns p
as an element of the current domain, if retractIfCan(p)
does not return "failed", otherwise an error is produced.
- retract : % -> R
- from RetractableTo(R)
- retract : % -> V
- from RetractableTo(V)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : Polynomial(R) -> Union(%, "failed") if V has ConvertibleTo(Symbol)
retractIfCan(p)
returns p
as an element of the current domain, if all its variables belong to V
.
- retractIfCan : Polynomial(Fraction(Integer)) -> Union(%, "failed") if R has Algebra(Fraction(Integer)) and V has ConvertibleTo(Symbol)
retractIfCan(p)
returns p
as an element of the current domain, if all its variables belong to V
.
- retractIfCan : Polynomial(Integer) -> Union(%, "failed") if R has Algebra(Integer) and V has ConvertibleTo(Symbol)
retractIfCan(p)
returns p
as an element of the current domain, if all its variables belong to V
.
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(V, "failed")
- from RetractableTo(V)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%) if R has GcdDomain
- from PolynomialCategory(R, E, V)
- squareFreePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, E, V)
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- subResultantChain : (%, %) -> List(%) if R has IntegralDomain
subResultantChain(a, b)
, where a
and b
are not constant polynomials with the same main variable, returns the subresultant chain of a
and b
.
- subResultantGcd : (%, %) -> % if R has IntegralDomain
subResultantGcd(a, b)
computes a gcd
of a
and b
where a
and b
are assumed to have the same main variable v
and are viewed as univariate polynomials in v
with coefficients in the fraction field of the polynomial ring generated by their other variables over R
.
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- supRittWu? : (%, %) -> Boolean
supRittWu?(a, b)
returns true
if a
is greater than b
w
.r
.t
. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.
- support : % -> List(E)
- from FreeModuleCategory(R, E)
- tail : % -> %
tail(p)
returns its reductum, where p
is viewed as a univariate polynomial in its main variable.
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, V)
- totalDegree : (%, List(V)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, V)
- totalDegreeSorted : (%, List(V)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, V)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- univariate : (%, V) -> SparseUnivariatePolynomial(%)
- from PolynomialCategory(R, E, V)
- univariate : % -> SparseUnivariatePolynomial(R)
- from PolynomialCategory(R, E, V)
- variables : % -> List(V)
- from MaybeSkewPolynomialCategory(R, E, V)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IndexedDirectProductCategory(R, E)
AbelianProductCategory(R)
Module(Fraction(Integer))
Comparable
NonAssociativeSemiRing
LeftModule(R)
CoercibleFrom(V)
BiModule(%, %)
ConvertibleTo(InputForm)
canonicalUnitNormal
Rng
AbelianMonoid
FullyLinearlyExplicitOver(R)
TwoSidedRecip
CancellationAbelianMonoid
SemiRing
EntireRing
PatternMatchable(Float)
NonAssociativeAlgebra(Fraction(Integer))
RetractableTo(R)
ConvertibleTo(Polynomial(R))
unitsKnown
CharacteristicNonZero
MagmaWithUnit
RetractableTo(V)
noZeroDivisors
CoercibleFrom(R)
InnerEvalable(%, %)
SemiGroup
RightModule(Fraction(Integer))
LeftModule(%)
GcdDomain
IntegralDomain
LinearlyExplicitOver(Integer)
Magma
UniqueFactorizationDomain
IndexedProductCategory(R, E)
NonAssociativeAlgebra(%)
Algebra(%)
Module(R)
CoercibleFrom(Fraction(Integer))
BiModule(R, R)
CharacteristicZero
PartialDifferentialRing(V)
Algebra(R)
FreeModuleCategory(R, E)
RightModule(R)
NonAssociativeRng
CommutativeRing
InnerEvalable(V, %)
NonAssociativeSemiRng
CoercibleFrom(Integer)
RetractableTo(Integer)
SetCategory
LinearlyExplicitOver(R)
RightModule(Integer)
CommutativeStar
NonAssociativeRing
RightModule(%)
VariablesCommuteWithCoefficients
Hashable
SemiRng
InnerEvalable(V, R)
ConvertibleTo(String)
Module(%)
LeftOreRing
CoercibleTo(OutputForm)
FiniteAbelianMonoidRing(R, E)
FullyRetractableTo(R)
PolynomialCategory(R, E, V)
MaybeSkewPolynomialCategory(R, E, V)
Monoid
PolynomialFactorizationExplicit
Algebra(Fraction(Integer))
CoercibleTo(Polynomial(R))
BasicType
Ring
AbelianMonoidRing(R, E)
AbelianSemiGroup
ConvertibleTo(Pattern(Float))
PatternMatchable(Integer)
Evalable(%)
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(Fraction(Integer))
ConvertibleTo(Pattern(Integer))
AbelianGroup
LeftModule(Fraction(Integer))
NonAssociativeAlgebra(R)