RecursivePolynomialCategory(R, E, V)
newpoly.spad line 231
[edit on github]
A category for general multi-variate polynomials with coefficients in a ring, variables in an ordered set, and exponents from an ordered abelian monoid, with a sup operation. When not constant, such a polynomial is viewed as a univariate polynomial in its main variable w. r. t. to the total ordering on the elements in the ordered set, so that some operations usually defined for univariate polynomials make sense here.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, E)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, V) -> %
- from PartialDifferentialRing(V)
- D : (%, V, NonNegativeInteger) -> %
- from PartialDifferentialRing(V)
- D : (%, List(V)) -> %
- from PartialDifferentialRing(V)
- D : (%, List(V), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(V)
- LazardQuotient : (%, %, NonNegativeInteger) -> % if R has IntegralDomain
LazardQuotient(a, b, n) returns a^n exquo b^(n-1) assuming that this quotient does not fail.
- LazardQuotient2 : (%, %, %, NonNegativeInteger) -> % if R has IntegralDomain
LazardQuotient2(p, a, b, n) returns (a^(n-1) * p) exquo b^(n-1) assuming that this quotient does not fail.
- RittWuCompare : (%, %) -> Union(Boolean, "failed")
RittWuCompare(a,b) returns "failed" if a and b have same rank w.r.t. Ritt and Wu Wen Tsun ordering using the refinement of Lazard, otherwise returns infRittWu?(a, b).
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, E)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- from PolynomialFactorizationExplicit
- coefficient : (%, V, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, V)
- coefficient : (%, List(V), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, E, V)
- coefficient : (%, E) -> R
- from AbelianMonoidRing(R, E)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, E)
- coerce : % -> % if R has CommutativeRing
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : V -> %
- from CoercibleFrom(V)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> Polynomial(R) if V has ConvertibleTo(Symbol)
- from CoercibleTo(Polynomial(R))
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- construct : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- constructOrdered : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- content : (%, V) -> % if R has GcdDomain
- from PolynomialCategory(R, E, V)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, E)
- convert : Polynomial(R) -> % if V has ConvertibleTo(Symbol)
convert(p) returns the same as retract(p).
- convert : Polynomial(Fraction(Integer)) -> % if R has Algebra(Fraction(Integer)) and V has ConvertibleTo(Symbol)
convert(p) returns the same as retract(p).
- convert : Polynomial(Integer) -> % if R has Algebra(Integer) and V has ConvertibleTo(Symbol)
convert(p) returns the same as retract(p).
- convert : % -> InputForm if V has ConvertibleTo(InputForm) and R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if V has ConvertibleTo(Pattern(Float)) and R has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if V has ConvertibleTo(Pattern(Integer)) and R has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- convert : % -> Polynomial(R) if V has ConvertibleTo(Symbol)
- from ConvertibleTo(Polynomial(R))
- convert : % -> String if V has ConvertibleTo(Symbol) and R has RetractableTo(Integer)
- from ConvertibleTo(String)
- deepestInitial : % -> %
deepestInitial(p) returns an error if p belongs to R, otherwise returns the last term of iteratedInitials(p).
- deepestTail : % -> %
deepestTail(p) returns 0 if p belongs to R, otherwise returns tail(p), if tail(p) belongs to R or mvar(tail(p)) < mvar(p), otherwise returns deepestTail(tail(p)).
- degree : % -> E
- from AbelianMonoidRing(R, E)
- degree : (%, List(V)) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(R, E, V)
- degree : (%, V) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, V)
- differentiate : (%, V) -> %
- from PartialDifferentialRing(V)
- differentiate : (%, V, NonNegativeInteger) -> %
- from PartialDifferentialRing(V)
- differentiate : (%, List(V)) -> %
- from PartialDifferentialRing(V)
- differentiate : (%, List(V), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(V)
- discriminant : (%, V) -> % if R has CommutativeRing
- from PolynomialCategory(R, E, V)
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, V, %) -> %
- from InnerEvalable(V, %)
- eval : (%, V, R) -> %
- from InnerEvalable(V, R)
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(V), List(%)) -> %
- from InnerEvalable(V, %)
- eval : (%, List(V), List(R)) -> %
- from InnerEvalable(V, R)
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- exactQuotient : (%, %) -> % if R has IntegralDomain
exactQuotient(a, b) computes the exact quotient of a by b, which is assumed to be a divisor of a. No error is returned if this exact quotient fails!
- exactQuotient : (%, R) -> % if R has IntegralDomain
exactQuotient(p, r) computes the exact quotient of p by r, which is assumed to be a divisor of p. No error is returned if this exact quotient fails!
- exactQuotient! : (%, %) -> % if R has IntegralDomain
exactQuotient!(a, b) replaces a by exactQuotient(a, b)
- exactQuotient! : (%, R) -> % if R has IntegralDomain
exactQuotient!(p, r) replaces p by exactQuotient(p, r).
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, E)
- extendedSubResultantGcd : (%, %) -> Record(gcd : %, coef1 : %, coef2 : %) if R has IntegralDomain
extendedSubResultantGcd(a, b) returns [g, ca, cb] such that g is subResultantGcd(a, b) and we have ca * a + cb * cb = g.
- factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- fmecg : (%, E, R, %) -> %
- from FiniteAbelianMonoidRing(R, E)
- gcd : (%, %) -> % if R has GcdDomain
- from GcdDomain
- gcd : List(%) -> % if R has GcdDomain
- from GcdDomain
- gcd : (R, %) -> R if R has GcdDomain
gcd(r, p) returns the gcd of r and the content of p.
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
- from PolynomialFactorizationExplicit
- ground : % -> R
- from FiniteAbelianMonoidRing(R, E)
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, E)
- halfExtendedSubResultantGcd1 : (%, %) -> Record(gcd : %, coef1 : %) if R has IntegralDomain
halfExtendedSubResultantGcd1(a, b) returns [g, ca] if extendedSubResultantGcd(a, b) returns [g, ca, cb] otherwise produces an error.
- halfExtendedSubResultantGcd2 : (%, %) -> Record(gcd : %, coef2 : %) if R has IntegralDomain
halfExtendedSubResultantGcd2(a, b) returns [g, cb] if extendedSubResultantGcd(a, b) returns [g, ca, cb] otherwise produces an error.
- hash : % -> SingleInteger if R has Hashable and V has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable and V has Hashable
- from Hashable
- head : % -> %
head(p) returns p if p belongs to R, otherwise returns its leading term (monomial in the FriCAS sense), where p is viewed as a univariate polynomial in its main variable.
- headReduce : (%, %) -> %
headReduce(a, b) returns a polynomial r such that headReduced?(r, b) holds and there exists an integer e such that init(b)^e a - r is zero modulo b.
- headReduced? : (%, %) -> Boolean
headReduced?(a, b) returns true iff degree(head(a), mvar(b)) < mdeg(b).
- headReduced? : (%, List(%)) -> Boolean
headReduced?(q, lp) returns true iff headReduced?(q, p) holds for every p in lp.
- iexactQuo : (R, R) -> R if R has IntegralDomain
iexactQuo(x, y) should be local but conditional
- infRittWu? : (%, %) -> Boolean
infRittWu?(a, b) returns true if a is less than b w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.
- init : % -> %
init(p) returns an error if p belongs to R, otherwise returns its leading coefficient, where p is viewed as a univariate polynomial in its main variable.
- initiallyReduce : (%, %) -> %
initiallyReduce(a, b) returns a polynomial r such that initiallyReduced?(r, b) holds and there exists an integer e such that init(b)^e a - r is zero modulo b.
- initiallyReduced? : (%, %) -> Boolean
initiallyReduced?(a, b) returns false iff there exists an iterated initial of a which is not reduced w.r.t b.
- initiallyReduced? : (%, List(%)) -> Boolean
initiallyReduced?(q, lp) returns true iff initiallyReduced?(q, p) holds for every p in lp.
- isExpt : % -> Union(Record(var : V, exponent : NonNegativeInteger), "failed")
- from PolynomialCategory(R, E, V)
- isPlus : % -> Union(List(%), "failed")
- from PolynomialCategory(R, E, V)
- isTimes : % -> Union(List(%), "failed")
- from PolynomialCategory(R, E, V)
- iteratedInitials : % -> List(%)
iteratedInitials(p) returns [] if p belongs to R, otherwise returns the list of the iterated initials of p.
- lastSubResultant : (%, %) -> % if R has IntegralDomain
lastSubResultant(a, b) returns the last non-zero subresultant of a and b where a and b are assumed to have the same main variable v and are viewed as univariate polynomials in v.
- latex : % -> String
- from SetCategory
- lazyPquo : (%, %) -> %
lazyPquo(a, b) returns the polynomial q such that lazyPseudoDivide(a, b) returns [c, g, q, r].
- lazyPquo : (%, %, V) -> %
lazyPquo(a, b, v) returns the polynomial q such that lazyPseudoDivide(a, b, v) returns [c, g, q, r].
- lazyPrem : (%, %) -> %
lazyPrem(a, b) returns the polynomial r reduced w.r.t. b and such that b divides init(b)^e a - r where e is the number of steps of this pseudo-division.
- lazyPrem : (%, %, V) -> %
lazyPrem(a, b, v) returns the polynomial r reduced w.r.t. b viewed as univariate polynomials in the variable v such that b divides init(b)^e a - r where e is the number of steps of this pseudo-division.
- lazyPremWithDefault : (%, %) -> Record(coef : %, gap : NonNegativeInteger, remainder : %)
lazyPremWithDefault(a, b) returns [c, g, r] such that r = lazyPrem(a, b) and (c^g)*r = prem(a, b).
- lazyPremWithDefault : (%, %, V) -> Record(coef : %, gap : NonNegativeInteger, remainder : %)
lazyPremWithDefault(a, b, v) returns [c, g, r] such that r = lazyPrem(a, b, v) and (c^g)*r = prem(a, b, v).
- lazyPseudoDivide : (%, %) -> Record(coef : %, gap : NonNegativeInteger, quotient : %, remainder : %)
lazyPseudoDivide(a, b) returns [c, g, q, r] such that [c, g, r] = lazyPremWithDefault(a, b) and q is the pseudo-quotient computed in this lazy pseudo-division.
- lazyPseudoDivide : (%, %, V) -> Record(coef : %, gap : NonNegativeInteger, quotient : %, remainder : %)
lazyPseudoDivide(a, b, v) returns [c, g, q, r] such that r = lazyPrem(a, b, v), (c^g)*r = prem(a, b, v) and q is the pseudo-quotient computed in this lazy pseudo-division.
- lazyResidueClass : (%, %) -> Record(polnum : %, polden : %, power : NonNegativeInteger)
lazyResidueClass(a, b) returns [p, q, n] where p / q^n represents the residue class of a modulo b and p is reduced w.r.t. b and q is init(b).
- lcm : (%, %) -> % if R has GcdDomain
- from GcdDomain
- lcm : List(%) -> % if R has GcdDomain
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
- from LeftOreRing
- leadingCoefficient : (%, V) -> %
leadingCoefficient(p, v) returns the leading coefficient of p, where p is viewed as A univariate polynomial in v.
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, E)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, E)
- leadingSupport : % -> E
- from IndexedProductCategory(R, E)
- leadingTerm : % -> Record(k : E, c : R)
- from IndexedProductCategory(R, E)
- leastMonomial : % -> %
leastMonomial(p) returns an error if p is O, otherwise, if p belongs to R returns 1, otherwise, the monomial of p with lowest degree, where p is viewed as a univariate polynomial in its main variable.
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, E), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, E)
- listOfTerms : % -> List(Record(k : E, c : R))
- from IndexedDirectProductCategory(R, E)
- mainCoefficients : % -> List(%)
mainCoefficients(p) returns an error if p is O, otherwise, if p belongs to R returns [p], otherwise returns the list of the coefficients of p, where p is viewed as a univariate polynomial in its main variable.
- mainContent : % -> % if R has GcdDomain
mainContent(p) returns the content of p viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over R.
- mainMonomial : % -> %
mainMonomial(p) returns an error if p is O, otherwise, if p belongs to R returns 1, otherwise, mvar(p) raised to the power mdeg(p).
- mainMonomials : % -> List(%)
mainMonomials(p) returns an error if p is O, otherwise, if p belongs to R returns [1], otherwise returns the list of the monomials of p, where p is viewed as a univariate polynomial in its main variable.
- mainPrimitivePart : % -> % if R has GcdDomain
mainPrimitivePart(p) returns the primitive part of p viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over R.
- mainSquareFreePart : % -> % if R has GcdDomain
mainSquareFreePart(p) returns the square free part of p viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over R.
- mainVariable : % -> Union(V, "failed")
- from MaybeSkewPolynomialCategory(R, E, V)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, E)
- mapExponents : (Mapping(E, E), %) -> %
- from FiniteAbelianMonoidRing(R, E)
- mdeg : % -> NonNegativeInteger
mdeg(p) returns an error if p is 0, otherwise, if p belongs to R returns 0, otherwise, returns the degree of p in its main variable.
- minimumDegree : % -> E
- from FiniteAbelianMonoidRing(R, E)
- minimumDegree : (%, List(V)) -> List(NonNegativeInteger)
- from PolynomialCategory(R, E, V)
- minimumDegree : (%, V) -> NonNegativeInteger
- from PolynomialCategory(R, E, V)
- monic? : % -> Boolean
monic?(p) returns false if p belongs to R, otherwise returns true iff p is monic as a univariate polynomial in its main variable.
- monicDivide : (%, %, V) -> Record(quotient : %, remainder : %)
- from PolynomialCategory(R, E, V)
- monicModulo : (%, %) -> %
monicModulo(a, b) computes a mod b, if b is monic as univariate polynomial in its main variable.
- monomial : (%, V, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, E, V)
- monomial : (%, List(V), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, E, V)
- monomial : (R, E) -> %
- from IndexedProductCategory(R, E)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, E)
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, E, V)
- multivariate : (SparseUnivariatePolynomial(%), V) -> %
- from PolynomialCategory(R, E, V)
- multivariate : (SparseUnivariatePolynomial(R), V) -> %
- from PolynomialCategory(R, E, V)
- mvar : % -> V
mvar(p) returns an error if p belongs to R, otherwise returns its main variable w. r. t. to the total ordering on the elements in V.
- next_subResultant2 : (%, %, %, %) -> % if R has IntegralDomain
next_subResultant2(p, q, z, s) is the multivariate version of the operation next_sousResultant2 from the PseudoRemainderSequence constructor.
- normalized? : (%, %) -> Boolean
normalized?(a, b) returns true iff a and its iterated initials have degree zero w.r.t. the main variable of b
- normalized? : (%, List(%)) -> Boolean
normalized?(q, lp) returns true iff normalized?(q, p) holds for every p in lp.
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, E)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if V has PatternMatchable(Float) and R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if V has PatternMatchable(Integer) and R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, E, %) -> %
- from FiniteAbelianMonoidRing(R, E)
- pquo : (%, %) -> %
pquo(a, b) computes the pseudo-quotient of a by b, both viewed as univariate polynomials in the main variable of b.
- pquo : (%, %, V) -> %
pquo(a, b, v) computes the pseudo-quotient of a by b, both viewed as univariate polynomials in v.
- prem : (%, %) -> %
prem(a, b) computes the pseudo-remainder of a by b, both viewed as univariate polynomials in the main variable of b.
- prem : (%, %, V) -> %
prem(a, b, v) computes the pseudo-remainder of a by b, both viewed as univariate polynomials in v.
- primPartElseUnitCanonical : % -> % if R has IntegralDomain
primPartElseUnitCanonical(p) returns primitivePart(p) if R is a gcd-domain, otherwise unitCanonical(p).
- primPartElseUnitCanonical! : % -> % if R has IntegralDomain
primPartElseUnitCanonical!(p) replaces p by primPartElseUnitCanonical(p).
- prime? : % -> Boolean if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- primitiveMonomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, E, V)
- primitivePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, E, V)
- primitivePart : (%, V) -> % if R has GcdDomain
- from PolynomialCategory(R, E, V)
- primitivePart! : % -> % if R has GcdDomain
primitivePart!(p) replaces p by its primitive part.
- pseudoDivide : (%, %) -> Record(quotient : %, remainder : %)
pseudoDivide(a, b) computes [pquo(a, b), prem(a, b)], both polynomials viewed as univariate polynomials in the main variable of b, if b is not a constant polynomial.
- quasiMonic? : % -> Boolean
quasiMonic?(p) returns false if p belongs to R, otherwise returns true iff the initial of p lies in the base ring R.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduced? : (%, %) -> Boolean
reduced?(a, b) returns true iff degree(a, mvar(b)) < mdeg(b).
- reduced? : (%, List(%)) -> Boolean
reduced?(q, lp) returns true iff reduced?(q, p) holds for every p in lp.
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(R, E)
- reductum : (%, V) -> %
reductum(p, v) returns the reductum of p, where p is viewed as a univariate polynomial in v.
- resultant : (%, %) -> % if R has IntegralDomain
resultant(a, b) computes the resultant of a and b where a and b are assumed to have the same main variable v and are viewed as univariate polynomials in v.
- resultant : (%, %, V) -> % if R has CommutativeRing
- from PolynomialCategory(R, E, V)
- retract : Polynomial(R) -> % if V has ConvertibleTo(Symbol)
retract(p) returns p as an element of the current domain, if retractIfCan(p) does not return "failed", otherwise an error is produced.
- retract : Polynomial(Fraction(Integer)) -> % if R has Algebra(Fraction(Integer)) and V has ConvertibleTo(Symbol)
retract(p) returns p as an element of the current domain, if retractIfCan(p) does not return "failed", otherwise an error is produced.
- retract : Polynomial(Integer) -> % if R has Algebra(Integer) and V has ConvertibleTo(Symbol)
retract(p) returns p as an element of the current domain, if retractIfCan(p) does not return "failed", otherwise an error is produced.
- retract : % -> R
- from RetractableTo(R)
- retract : % -> V
- from RetractableTo(V)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : Polynomial(R) -> Union(%, "failed") if V has ConvertibleTo(Symbol)
retractIfCan(p) returns p as an element of the current domain, if all its variables belong to V.
- retractIfCan : Polynomial(Fraction(Integer)) -> Union(%, "failed") if R has Algebra(Fraction(Integer)) and V has ConvertibleTo(Symbol)
retractIfCan(p) returns p as an element of the current domain, if all its variables belong to V.
- retractIfCan : Polynomial(Integer) -> Union(%, "failed") if R has Algebra(Integer) and V has ConvertibleTo(Symbol)
retractIfCan(p) returns p as an element of the current domain, if all its variables belong to V.
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(V, "failed")
- from RetractableTo(V)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%) if R has GcdDomain
- from PolynomialCategory(R, E, V)
- squareFreePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, E, V)
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- subResultantChain : (%, %) -> List(%) if R has IntegralDomain
subResultantChain(a, b), where a and b are not constant polynomials with the same main variable, returns the subresultant chain of a and b.
- subResultantGcd : (%, %) -> % if R has IntegralDomain
subResultantGcd(a, b) computes a gcd of a and b where a and b are assumed to have the same main variable v and are viewed as univariate polynomials in v with coefficients in the fraction field of the polynomial ring generated by their other variables over R.
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- supRittWu? : (%, %) -> Boolean
supRittWu?(a, b) returns true if a is greater than b w.r.t. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.
- support : % -> List(E)
- from FreeModuleCategory(R, E)
- tail : % -> %
tail(p) returns its reductum, where p is viewed as a univariate polynomial in its main variable.
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, V)
- totalDegree : (%, List(V)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, V)
- totalDegreeSorted : (%, List(V)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, E, V)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- univariate : (%, V) -> SparseUnivariatePolynomial(%)
- from PolynomialCategory(R, E, V)
- univariate : % -> SparseUnivariatePolynomial(R)
- from PolynomialCategory(R, E, V)
- variables : % -> List(V)
- from MaybeSkewPolynomialCategory(R, E, V)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IndexedDirectProductCategory(R, E)
AbelianProductCategory(R)
Module(Fraction(Integer))
Comparable
NonAssociativeSemiRing
LeftModule(R)
CoercibleFrom(V)
BiModule(%, %)
ConvertibleTo(InputForm)
canonicalUnitNormal
Rng
AbelianMonoid
FullyLinearlyExplicitOver(R)
TwoSidedRecip
CancellationAbelianMonoid
SemiRing
EntireRing
PatternMatchable(Float)
NonAssociativeAlgebra(Fraction(Integer))
RetractableTo(R)
ConvertibleTo(Polynomial(R))
unitsKnown
CharacteristicNonZero
MagmaWithUnit
RetractableTo(V)
noZeroDivisors
CoercibleFrom(R)
InnerEvalable(%, %)
SemiGroup
RightModule(Fraction(Integer))
LeftModule(%)
GcdDomain
IntegralDomain
LinearlyExplicitOver(Integer)
Magma
UniqueFactorizationDomain
IndexedProductCategory(R, E)
NonAssociativeAlgebra(%)
Algebra(%)
Module(R)
CoercibleFrom(Fraction(Integer))
BiModule(R, R)
CharacteristicZero
PartialDifferentialRing(V)
Algebra(R)
FreeModuleCategory(R, E)
RightModule(R)
NonAssociativeRng
CommutativeRing
InnerEvalable(V, %)
NonAssociativeSemiRng
CoercibleFrom(Integer)
RetractableTo(Integer)
SetCategory
LinearlyExplicitOver(R)
RightModule(Integer)
CommutativeStar
NonAssociativeRing
RightModule(%)
VariablesCommuteWithCoefficients
Hashable
SemiRng
InnerEvalable(V, R)
ConvertibleTo(String)
Module(%)
LeftOreRing
CoercibleTo(OutputForm)
FiniteAbelianMonoidRing(R, E)
FullyRetractableTo(R)
PolynomialCategory(R, E, V)
MaybeSkewPolynomialCategory(R, E, V)
Monoid
PolynomialFactorizationExplicit
Algebra(Fraction(Integer))
CoercibleTo(Polynomial(R))
BasicType
Ring
AbelianMonoidRing(R, E)
AbelianSemiGroup
ConvertibleTo(Pattern(Float))
PatternMatchable(Integer)
Evalable(%)
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(Fraction(Integer))
ConvertibleTo(Pattern(Integer))
AbelianGroup
LeftModule(Fraction(Integer))
NonAssociativeAlgebra(R)