ElementaryFunctionsUnivariateLaurentSeries(Coef, UTS, ULS)
efuls.spad line 1
[edit on github]
This package provides elementary functions on any Laurent series domain over a field which was constructed from a Taylor series domain. These functions are implemented by calling the corresponding functions on the Taylor series domain. We also provide 'partial functions' which compute transcendental functions of Laurent series when possible and return "failed" when this is not possible.
- ^ : (ULS, Fraction(Integer)) -> ULS if Coef has Field
s ^ r
raises a Laurent series s
to a rational power r
- acos : ULS -> ULS
acos(z)
returns the arc-cosine of Laurent series z
.
- acosIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- acosh : ULS -> ULS
acosh(z)
returns the inverse hyperbolic cosine of Laurent series z
.
- acoshIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- acot : ULS -> ULS
acot(z)
returns the arc-cotangent of Laurent series z
.
- acotIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- acoth : ULS -> ULS
acoth(z)
returns the inverse hyperbolic cotangent of Laurent series z
.
- acothIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- acsc : ULS -> ULS
acsc(z)
returns the arc-cosecant of Laurent series z
.
- acscIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- acsch : ULS -> ULS
acsch(z)
returns the inverse hyperbolic cosecant of Laurent series z
.
- acschIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- asec : ULS -> ULS
asec(z)
returns the arc-secant of Laurent series z
.
- asecIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- asech : ULS -> ULS
asech(z)
returns the inverse hyperbolic secant of Laurent series z
.
- asechIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- asin : ULS -> ULS
asin(z)
returns the arc-sine of Laurent series z
.
- asinIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- asinh : ULS -> ULS
asinh(z)
returns the inverse hyperbolic sine of Laurent series z
.
- asinhIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- atan : ULS -> ULS
atan(z)
returns the arc-tangent of Laurent series z
.
- atanIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- atanh : ULS -> ULS
atanh(z)
returns the inverse hyperbolic tangent of Laurent series z
.
- atanhIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- cos : ULS -> ULS
cos(z)
returns the cosine of Laurent series z
.
- cosIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- cosh : ULS -> ULS
cosh(z)
returns the hyperbolic cosine of Laurent series z
.
- coshIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- cot : ULS -> ULS
cot(z)
returns the cotangent of Laurent series z
.
- cotIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- coth : ULS -> ULS
coth(z)
returns the hyperbolic cotangent of Laurent series z
.
- cothIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- csc : ULS -> ULS
csc(z)
returns the cosecant of Laurent series z
.
- cscIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- csch : ULS -> ULS
csch(z)
returns the hyperbolic cosecant of Laurent series z
.
- cschIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- exp : ULS -> ULS
exp(z)
returns the exponential of Laurent series z
.
- expIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- log : ULS -> ULS
log(z)
returns the logarithm of Laurent series z
.
- logIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- nthRootIfCan : (ULS, NonNegativeInteger) -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- sec : ULS -> ULS
sec(z)
returns the secant of Laurent series z
.
- secIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- sech : ULS -> ULS
sech(z)
returns the hyperbolic secant of Laurent series z
.
- sechIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- sin : ULS -> ULS
sin(z)
returns the sine of Laurent series z
.
- sinIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- sinh : ULS -> ULS
sinh(z)
returns the hyperbolic sine of Laurent series z
.
- sinhIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- tan : ULS -> ULS
tan(z)
returns the tangent of Laurent series z
.
- tanIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
- tanh : ULS -> ULS
tanh(z)
returns the hyperbolic tangent of Laurent series z
.
- tanhIfCan : ULS -> Union(ULS, "failed")
- from PartialTranscendentalFunctions(ULS)
PartialTranscendentalFunctions(ULS)