UnivariateTaylorSeriesCategory(Coef)
pscat.spad line 161
[edit on github]
UnivariateTaylorSeriesCategory is the category of Taylor series in one variable.
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> %
- from RightModule(Coef)
- * : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (Coef, %) -> %
- from LeftModule(Coef)
- * : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, NonNegativeInteger)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef
- from DifferentialRing
- D : (%, List(Symbol)) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, NonNegativeInteger) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef
- from DifferentialRing
- D : (%, Symbol) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, %) -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- ^ : (%, Coef) -> % if Coef has Field
f(x) ^ a
computes a power of a power series. When the coefficient ring is a field, we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.
- ^ : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- acos : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acosh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acot : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acoth : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- acsc : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- acsch : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, NonNegativeInteger) -> Coef if Coef has coerce : Symbol -> Coef and Coef has ^ : (Coef, NonNegativeInteger) -> Coef
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- asec : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asech : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- asin : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- asinh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcTrigonometricFunctionCategory
- atanh : % -> % if Coef has Algebra(Fraction(Integer))
- from ArcHyperbolicFunctionCategory
- center : % -> Coef
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, NonNegativeInteger) -> Coef
- from AbelianMonoidRing(Coef, NonNegativeInteger)
- coefficients : % -> Stream(Coef)
coefficients(a0 + a1 x + a2 x^2 + ...)
returns a stream of coefficients: [a0, a1, a2, ...]
. The entries of the stream may be zero.
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- construct : List(Record(k : NonNegativeInteger, c : Coef)) -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- constructOrdered : List(Record(k : NonNegativeInteger, c : Coef)) -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- cos : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- cosh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- cot : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- coth : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- csc : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- csch : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- degree : % -> NonNegativeInteger
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- differentiate : % -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, NonNegativeInteger) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, Symbol) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (NonNegativeInteger, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- elt : (%, %) -> %
- from Eltable(%, %)
- elt : (%, NonNegativeInteger) -> Coef
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- eval : (%, Coef) -> Stream(Coef) if Coef has ^ : (Coef, NonNegativeInteger) -> Coef
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- exp : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
- from EntireRing
- extend : (%, NonNegativeInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- integrate : % -> % if Coef has Algebra(Fraction(Integer))
- from UnivariateSeriesWithRationalExponents(Coef, NonNegativeInteger)
- integrate : (%, Symbol) -> % if Coef has Algebra(Fraction(Integer)) and Coef has integrate : (Coef, Symbol) -> Coef and Coef has variables : Coef -> List(Symbol)
- from UnivariateSeriesWithRationalExponents(Coef, NonNegativeInteger)
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> Coef
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- leadingMonomial : % -> %
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- leadingSupport : % -> NonNegativeInteger
- from IndexedProductCategory(Coef, NonNegativeInteger)
- leadingTerm : % -> Record(k : NonNegativeInteger, c : Coef)
- from IndexedProductCategory(Coef, NonNegativeInteger)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- log : % -> % if Coef has Algebra(Fraction(Integer))
- from ElementaryFunctionCategory
- map : (Mapping(Coef, Coef), %) -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- monomial : (Coef, NonNegativeInteger) -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- monomial? : % -> Boolean
- from IndexedProductCategory(Coef, NonNegativeInteger)
- multiplyCoefficients : (Mapping(Coef, Integer), %) -> %
multiplyCoefficients(f, sum(n = 0..infinity, a[n] * x^n))
returns sum(n = 0..infinity, f(n) * a[n] * x^n)
. This function is used when Laurent series are represented by a Taylor series and an order.
- multiplyExponents : (%, PositiveInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- nthRoot : (%, Integer) -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> NonNegativeInteger
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- order : (%, NonNegativeInteger) -> NonNegativeInteger
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- pi : () -> % if Coef has Algebra(Fraction(Integer))
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> % if Coef has Algebra(Fraction(Integer)) or Coef has CommutativeRing
- from NonAssociativeAlgebra(Coef)
- pole? : % -> Boolean
- from PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
- polynomial : (%, NonNegativeInteger) -> Polynomial(Coef)
polynomial(f, k)
returns a polynomial consisting of the sum of all terms of f
of degree <= k
.
- polynomial : (%, NonNegativeInteger, NonNegativeInteger) -> Polynomial(Coef)
polynomial(f, k1, k2)
returns a polynomial consisting of the sum of all terms of f
of degree d
with k1 <= d <= k2
.
- quoByVar : % -> %
quoByVar(a0 + a1 x + a2 x^2 + ...)
returns a1 + a2 x + a3 x^2 + ...
Thus, this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(Coef, NonNegativeInteger)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sec : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sech : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- series : Stream(Coef) -> %
series([a0, a1, a2, ...])
is the Taylor series a0 + a1 x + a2 x^2 + ...
.
- series : Stream(Record(k : NonNegativeInteger, c : Coef)) -> %
series(st)
creates a series from a stream of non-zero terms, where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.
- sin : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- sinh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- sqrt : % -> % if Coef has Algebra(Fraction(Integer))
- from RadicalCategory
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tan : % -> % if Coef has Algebra(Fraction(Integer))
- from TrigonometricFunctionCategory
- tanh : % -> % if Coef has Algebra(Fraction(Integer))
- from HyperbolicFunctionCategory
- terms : % -> Stream(Record(k : NonNegativeInteger, c : Coef))
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- truncate : (%, NonNegativeInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- truncate : (%, NonNegativeInteger, NonNegativeInteger) -> %
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- unit? : % -> Boolean if Coef has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if Coef has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
- from EntireRing
- variable : % -> Symbol
- from UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
NonAssociativeAlgebra(Coef)
Module(Coef)
NonAssociativeSemiRing
BiModule(%, %)
Rng
ArcTrigonometricFunctionCategory
TwoSidedRecip
TranscendentalFunctionCategory
SemiRing
EntireRing
RightModule(Coef)
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
RadicalCategory
AbelianMonoidRing(Coef, NonNegativeInteger)
NonAssociativeRng
CharacteristicNonZero
MagmaWithUnit
AbelianProductCategory(Coef)
Magma
SemiGroup
IntegralDomain
LeftModule(%)
NonAssociativeRing
ArcHyperbolicFunctionCategory
PartialDifferentialRing(Symbol)
CharacteristicZero
Algebra(%)
PowerSeriesCategory(Coef, NonNegativeInteger, SingletonAsOrderedSet)
CommutativeRing
DifferentialRing
RightModule(Fraction(Integer))
Eltable(%, %)
NonAssociativeSemiRng
CancellationAbelianMonoid
IndexedProductCategory(Coef, NonNegativeInteger)
AbelianMonoid
VariablesCommuteWithCoefficients
CommutativeStar
UnivariatePowerSeriesCategory(Coef, NonNegativeInteger)
RightModule(%)
BiModule(Coef, Coef)
Module(%)
CoercibleTo(OutputForm)
Algebra(Coef)
SemiRng
Monoid
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
UnivariateSeriesWithRationalExponents(Coef, NonNegativeInteger)
BasicType
Ring
LeftModule(Fraction(Integer))
AbelianSemiGroup
SetCategory
noZeroDivisors
TrigonometricFunctionCategory
LeftModule(Coef)
BiModule(Fraction(Integer), Fraction(Integer))
HyperbolicFunctionCategory
AbelianGroup
ElementaryFunctionCategory