PowerSeriesCategory(Coef, Expon, Var)
pscat.spad line 1
[edit on github]
PowerSeriesCategory is the most general power series category with exponents in an ordered abelian monoid.
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> %
- from RightModule(Coef)
- * : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (Coef, %) -> %
- from LeftModule(Coef)
- * : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, Expon)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Expon) -> Coef
- from AbelianMonoidRing(Coef, Expon)
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
complete(f)
causes all terms of f
to be computed. Note: this results in an infinite loop if f
has infinitely many terms.
- construct : List(Record(k : Expon, c : Coef)) -> %
- from IndexedProductCategory(Coef, Expon)
- constructOrdered : List(Record(k : Expon, c : Coef)) -> %
- from IndexedProductCategory(Coef, Expon)
- degree : % -> Expon
degree(f)
returns the exponent of the lowest order term of f
.
- exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
- from EntireRing
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> Coef
leadingCoefficient(f)
returns the coefficient of the lowest order term of f
- leadingMonomial : % -> %
leadingMonomial(f)
returns the monomial of f
of lowest order.
- leadingSupport : % -> Expon
- from IndexedProductCategory(Coef, Expon)
- leadingTerm : % -> Record(k : Expon, c : Coef)
- from IndexedProductCategory(Coef, Expon)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- map : (Mapping(Coef, Coef), %) -> %
- from IndexedProductCategory(Coef, Expon)
- monomial : (Coef, Expon) -> %
- from IndexedProductCategory(Coef, Expon)
- monomial? : % -> Boolean
- from IndexedProductCategory(Coef, Expon)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(Coef)
- pole? : % -> Boolean
pole?(f)
determines if the power series f
has a pole.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(Coef, Expon)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean if Coef has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if Coef has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
Module(Coef)
noZeroDivisors
LeftModule(Coef)
LeftModule(Fraction(Integer))
Algebra(%)
RightModule(%)
Monoid
AbelianMonoid
CharacteristicZero
NonAssociativeSemiRng
NonAssociativeAlgebra(Fraction(Integer))
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
RightModule(Fraction(Integer))
BiModule(%, %)
CoercibleTo(OutputForm)
RightModule(Coef)
LeftModule(%)
IndexedProductCategory(Coef, Expon)
SemiRng
Module(%)
SetCategory
AbelianProductCategory(Coef)
Algebra(Fraction(Integer))
Rng
CommutativeRing
IntegralDomain
TwoSidedRecip
Magma
SemiGroup
AbelianGroup
AbelianSemiGroup
CommutativeStar
NonAssociativeSemiRing
VariablesCommuteWithCoefficients
NonAssociativeAlgebra(%)
BiModule(Fraction(Integer), Fraction(Integer))
BiModule(Coef, Coef)
NonAssociativeRng
unitsKnown
Ring
Algebra(Coef)
EntireRing
AbelianMonoidRing(Coef, Expon)
BasicType
NonAssociativeAlgebra(Coef)
SemiRing