PowerSeriesCategory(Coef, Expon, Var)

pscat.spad line 1 [edit on github]

PowerSeriesCategory is the most general power series category with exponents in an ordered abelian monoid.

* : (%, %) -> %
from Magma
* : (%, Coef) -> %
from RightModule(Coef)
* : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
from RightModule(Fraction(Integer))
* : (Coef, %) -> %
from LeftModule(Coef)
* : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Expon)
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
from CharacteristicNonZero
coefficient : (%, Expon) -> Coef
from AbelianMonoidRing(Coef, Expon)
coerce : % -> % if Coef has CommutativeRing
from Algebra(%)
coerce : Coef -> % if Coef has CommutativeRing
from Algebra(Coef)
coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
complete : % -> %

complete(f) causes all terms of f to be computed. Note: this results in an infinite loop if f has infinitely many terms.

construct : List(Record(k : Expon, c : Coef)) -> %
from IndexedProductCategory(Coef, Expon)
constructOrdered : List(Record(k : Expon, c : Coef)) -> %
from IndexedProductCategory(Coef, Expon)
degree : % -> Expon

degree(f) returns the exponent of the lowest order term of f.

exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
from EntireRing
latex : % -> String
from SetCategory
leadingCoefficient : % -> Coef

leadingCoefficient(f) returns the coefficient of the lowest order term of f

leadingMonomial : % -> %

leadingMonomial(f) returns the monomial of f of lowest order.

leadingSupport : % -> Expon
from IndexedProductCategory(Coef, Expon)
leadingTerm : % -> Record(k : Expon, c : Coef)
from IndexedProductCategory(Coef, Expon)
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
map : (Mapping(Coef, Coef), %) -> %
from IndexedProductCategory(Coef, Expon)
monomial : (Coef, Expon) -> %
from IndexedProductCategory(Coef, Expon)
monomial? : % -> Boolean
from IndexedProductCategory(Coef, Expon)
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> % if Coef has CommutativeRing or Coef has Algebra(Fraction(Integer))
from NonAssociativeAlgebra(Coef)
pole? : % -> Boolean

pole?(f) determines if the power series f has a pole.

recip : % -> Union(%, "failed")
from MagmaWithUnit
reductum : % -> %
from IndexedProductCategory(Coef, Expon)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit? : % -> Boolean if Coef has IntegralDomain
from EntireRing
unitCanonical : % -> % if Coef has IntegralDomain
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CharacteristicNonZero

Module(Fraction(Integer))

Module(Coef)

noZeroDivisors

LeftModule(Coef)

LeftModule(Fraction(Integer))

Algebra(%)

RightModule(%)

Monoid

AbelianMonoid

CharacteristicZero

NonAssociativeSemiRng

NonAssociativeAlgebra(Fraction(Integer))

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

RightModule(Fraction(Integer))

BiModule(%, %)

CoercibleTo(OutputForm)

RightModule(Coef)

LeftModule(%)

IndexedProductCategory(Coef, Expon)

SemiRng

Module(%)

SetCategory

AbelianProductCategory(Coef)

Algebra(Fraction(Integer))

Rng

CommutativeRing

IntegralDomain

TwoSidedRecip

Magma

SemiGroup

AbelianGroup

AbelianSemiGroup

CommutativeStar

NonAssociativeSemiRing

VariablesCommuteWithCoefficients

NonAssociativeAlgebra(%)

BiModule(Fraction(Integer), Fraction(Integer))

BiModule(Coef, Coef)

NonAssociativeRng

unitsKnown

Ring

Algebra(Coef)

EntireRing

AbelianMonoidRing(Coef, Expon)

BasicType

NonAssociativeAlgebra(Coef)

SemiRing