UnivariatePowerSeriesCategory(Coef, Expon)

pscat.spad line 51 [edit on github]

UnivariatePowerSeriesCategory is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.

* : (%, %) -> %
from Magma
* : (%, Coef) -> %
from RightModule(Coef)
* : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
from RightModule(Fraction(Integer))
* : (Coef, %) -> %
from LeftModule(Coef)
* : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, Coef) -> % if Coef has Field
from AbelianMonoidRing(Coef, Expon)
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : % -> % if Coef has * : (Expon, Coef) -> Coef
from DifferentialRing
D : (%, List(Symbol)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef
from DifferentialRing
D : (%, Symbol) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
approximate : (%, Expon) -> Coef if Coef has coerce : Symbol -> Coef and Coef has ^ : (Coef, Expon) -> Coef

approximate(f) returns a truncated power series with the series variable viewed as an element of the coefficient domain.

associates? : (%, %) -> Boolean if Coef has IntegralDomain
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
center : % -> Coef

center(f) returns the point about which the series f is expanded.

characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
from CharacteristicNonZero
coefficient : (%, Expon) -> Coef
from AbelianMonoidRing(Coef, Expon)
coerce : % -> % if Coef has CommutativeRing
from Algebra(%)
coerce : Coef -> % if Coef has CommutativeRing
from Algebra(Coef)
coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
complete : % -> %
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
construct : List(Record(k : Expon, c : Coef)) -> %
from IndexedProductCategory(Coef, Expon)
constructOrdered : List(Record(k : Expon, c : Coef)) -> %
from IndexedProductCategory(Coef, Expon)
degree : % -> Expon
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
differentiate : % -> % if Coef has * : (Expon, Coef) -> Coef
from DifferentialRing
differentiate : (%, List(Symbol)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef
from DifferentialRing
differentiate : (%, Symbol) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
from PartialDifferentialRing(Symbol)
elt : (%, %) -> % if Expon has SemiGroup
from Eltable(%, %)
elt : (%, Expon) -> Coef

elt(f(x), r) returns the coefficient of the term of degree r in f(x). This is the same as the function coefficient.

eval : (%, Coef) -> Stream(Coef) if Coef has ^ : (Coef, Expon) -> Coef

eval(f, a) evaluates a power series at a value in the ground ring by returning a stream of partial sums.

exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
from EntireRing
extend : (%, Expon) -> %

extend(f, n) causes all terms of f of degree <= n to be computed.

latex : % -> String
from SetCategory
leadingCoefficient : % -> Coef
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
leadingMonomial : % -> %
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
leadingSupport : % -> Expon
from IndexedProductCategory(Coef, Expon)
leadingTerm : % -> Record(k : Expon, c : Coef)
from IndexedProductCategory(Coef, Expon)
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
map : (Mapping(Coef, Coef), %) -> %
from IndexedProductCategory(Coef, Expon)
monomial : (Coef, Expon) -> %
from IndexedProductCategory(Coef, Expon)
monomial? : % -> Boolean
from IndexedProductCategory(Coef, Expon)
multiplyExponents : (%, PositiveInteger) -> %

multiplyExponents(f, n) multiplies all exponents of the power series f by the positive integer n.

one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> Expon

order(f) is the degree of the lowest order non-zero term in f. This will result in an infinite loop if f has no non-zero terms.

order : (%, Expon) -> Expon

order(f, n) = min(m, n), where m is the degree of the lowest order non-zero term in f.

plenaryPower : (%, PositiveInteger) -> % if Coef has Algebra(Fraction(Integer)) or Coef has CommutativeRing
from NonAssociativeAlgebra(Coef)
pole? : % -> Boolean
from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reductum : % -> %
from IndexedProductCategory(Coef, Expon)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
terms : % -> Stream(Record(k : Expon, c : Coef))

terms(f(x)) returns a stream of non-zero terms, where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents. Warning: If the series f has only finitely many non-zero terms, then accessing the resulting stream might lead to an infinite search for the next non-zero coefficient.

truncate : (%, Expon) -> %

truncate(f, k) returns a (finite) power series consisting of the sum of all terms of f of degree <= k.

truncate : (%, Expon, Expon) -> %

truncate(f, k1, k2) returns a (finite) power series consisting of the sum of all terms of f of degree d with k1 <= d <= k2.

unit? : % -> Boolean if Coef has IntegralDomain
from EntireRing
unitCanonical : % -> % if Coef has IntegralDomain
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
from EntireRing
variable : % -> Symbol

variable(f) returns the (unique) power series variable of the power series f.

zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CharacteristicNonZero

Module(Fraction(Integer))

PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)

LeftModule(Fraction(Integer))

SetCategory

noZeroDivisors

RightModule(%)

Monoid

Algebra(%)

AbelianMonoid

NonAssociativeAlgebra(Fraction(Integer))

Module(Coef)

BiModule(Coef, Coef)

CancellationAbelianMonoid

MagmaWithUnit

LeftModule(Coef)

NonAssociativeRing

AbelianGroup

RightModule(Fraction(Integer))

CommutativeStar

LeftModule(%)

IndexedProductCategory(Coef, Expon)

Eltable(%, %)

Module(%)

Algebra(Coef)

AbelianProductCategory(Coef)

BiModule(%, %)

Algebra(Fraction(Integer))

Rng

CommutativeRing

IntegralDomain

TwoSidedRecip

Magma

SemiGroup

NonAssociativeRng

RightModule(Coef)

PartialDifferentialRing(Symbol)

unitsKnown

CoercibleTo(OutputForm)

AbelianSemiGroup

NonAssociativeSemiRing

VariablesCommuteWithCoefficients

AbelianMonoidRing(Coef, Expon)

NonAssociativeAlgebra(%)

BiModule(Fraction(Integer), Fraction(Integer))

DifferentialRing

Ring

SemiRng

EntireRing

NonAssociativeSemiRng

CharacteristicZero

BasicType

NonAssociativeAlgebra(Coef)

SemiRing