UnivariatePowerSeriesCategory(Coef, Expon)
pscat.spad line 51
[edit on github]
UnivariatePowerSeriesCategory is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> %
- from RightModule(Coef)
- * : (%, Fraction(Integer)) -> % if Coef has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (Coef, %) -> %
- from LeftModule(Coef)
- * : (Fraction(Integer), %) -> % if Coef has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, Coef) -> % if Coef has Field
- from AbelianMonoidRing(Coef, Expon)
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> % if Coef has * : (Expon, Coef) -> Coef
- from DifferentialRing
- D : (%, List(Symbol)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef
- from DifferentialRing
- D : (%, Symbol) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- approximate : (%, Expon) -> Coef if Coef has coerce : Symbol -> Coef and Coef has ^ : (Coef, Expon) -> Coef
approximate(f)
returns a truncated power series with the series variable viewed as an element of the coefficient domain.
- associates? : (%, %) -> Boolean if Coef has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- center : % -> Coef
center(f)
returns the point about which the series f
is expanded.
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if Coef has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, Expon) -> Coef
- from AbelianMonoidRing(Coef, Expon)
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Fraction(Integer) -> % if Coef has Algebra(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- complete : % -> %
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- construct : List(Record(k : Expon, c : Coef)) -> %
- from IndexedProductCategory(Coef, Expon)
- constructOrdered : List(Record(k : Expon, c : Coef)) -> %
- from IndexedProductCategory(Coef, Expon)
- degree : % -> Expon
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- differentiate : % -> % if Coef has * : (Expon, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, List(Symbol)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef
- from DifferentialRing
- differentiate : (%, Symbol) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if Coef has * : (Expon, Coef) -> Coef and Coef has PartialDifferentialRing(Symbol)
- from PartialDifferentialRing(Symbol)
- elt : (%, %) -> % if Expon has SemiGroup
- from Eltable(%, %)
- elt : (%, Expon) -> Coef
elt(f(x), r)
returns the coefficient of the term of degree r
in f(x)
. This is the same as the function coefficient.
- eval : (%, Coef) -> Stream(Coef) if Coef has ^ : (Coef, Expon) -> Coef
eval(f, a)
evaluates a power series at a value in the ground ring by returning a stream of partial sums.
- exquo : (%, %) -> Union(%, "failed") if Coef has IntegralDomain
- from EntireRing
- extend : (%, Expon) -> %
extend(f, n)
causes all terms of f
of degree <=
n
to be computed.
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> Coef
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- leadingMonomial : % -> %
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- leadingSupport : % -> Expon
- from IndexedProductCategory(Coef, Expon)
- leadingTerm : % -> Record(k : Expon, c : Coef)
- from IndexedProductCategory(Coef, Expon)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- map : (Mapping(Coef, Coef), %) -> %
- from IndexedProductCategory(Coef, Expon)
- monomial : (Coef, Expon) -> %
- from IndexedProductCategory(Coef, Expon)
- monomial? : % -> Boolean
- from IndexedProductCategory(Coef, Expon)
- multiplyExponents : (%, PositiveInteger) -> %
multiplyExponents(f, n)
multiplies all exponents of the power series f
by the positive integer n
.
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> Expon
order(f)
is the degree of the lowest order non-zero term in f
. This will result in an infinite loop if f
has no non-zero terms.
- order : (%, Expon) -> Expon
order(f, n) = min(m, n)
, where m
is the degree of the lowest order non-zero term in f
.
- plenaryPower : (%, PositiveInteger) -> % if Coef has Algebra(Fraction(Integer)) or Coef has CommutativeRing
- from NonAssociativeAlgebra(Coef)
- pole? : % -> Boolean
- from PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(Coef, Expon)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- terms : % -> Stream(Record(k : Expon, c : Coef))
terms(f(x))
returns a stream of non-zero terms, where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents. Warning: If the series f
has only finitely many non-zero terms, then accessing the resulting stream might lead to an infinite search for the next non-zero coefficient.
- truncate : (%, Expon) -> %
truncate(f, k)
returns a (finite) power series consisting of the sum of all terms of f
of degree <= k
.
- truncate : (%, Expon, Expon) -> %
truncate(f, k1, k2)
returns a (finite) power series consisting of the sum of all terms of f
of degree d
with k1 <= d <= k2
.
- unit? : % -> Boolean if Coef has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if Coef has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has IntegralDomain
- from EntireRing
- variable : % -> Symbol
variable(f)
returns the (unique) power series variable of the power series f
.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
PowerSeriesCategory(Coef, Expon, SingletonAsOrderedSet)
LeftModule(Fraction(Integer))
SetCategory
noZeroDivisors
RightModule(%)
Monoid
Algebra(%)
AbelianMonoid
NonAssociativeAlgebra(Fraction(Integer))
Module(Coef)
BiModule(Coef, Coef)
CancellationAbelianMonoid
MagmaWithUnit
LeftModule(Coef)
NonAssociativeRing
AbelianGroup
RightModule(Fraction(Integer))
CommutativeStar
LeftModule(%)
IndexedProductCategory(Coef, Expon)
Eltable(%, %)
Module(%)
Algebra(Coef)
AbelianProductCategory(Coef)
BiModule(%, %)
Algebra(Fraction(Integer))
Rng
CommutativeRing
IntegralDomain
TwoSidedRecip
Magma
SemiGroup
NonAssociativeRng
RightModule(Coef)
PartialDifferentialRing(Symbol)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
VariablesCommuteWithCoefficients
AbelianMonoidRing(Coef, Expon)
NonAssociativeAlgebra(%)
BiModule(Fraction(Integer), Fraction(Integer))
DifferentialRing
Ring
SemiRng
EntireRing
NonAssociativeSemiRng
CharacteristicZero
BasicType
NonAssociativeAlgebra(Coef)
SemiRing