FiniteSetAggregate(S)

aggcat.spad line 595 [edit on github]

A finite-set aggregate models the notion of a finite set, that is, a collection of elements characterized by membership, but not by order or multiplicity. See Set for an example.

# : % -> NonNegativeInteger
from Aggregate
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
any? : (Mapping(Boolean, S), %) -> Boolean
from HomogeneousAggregate(S)
cardinality : % -> NonNegativeInteger

cardinality(u) returns the number of elements of u. Note: cardinality(u) = #u.

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
complement : % -> % if S has Finite

complement(u) returns the complement of the set u, i.e. the set of all values not in u.

construct : List(S) -> %
from Collection(S)
convert : % -> InputForm if S has ConvertibleTo(InputForm)
from ConvertibleTo(InputForm)
copy : % -> %
from Aggregate
count : (S, %) -> NonNegativeInteger
from HomogeneousAggregate(S)
count : (Mapping(Boolean, S), %) -> NonNegativeInteger
from HomogeneousAggregate(S)
dictionary : () -> %
from DictionaryOperations(S)
dictionary : List(S) -> %
from DictionaryOperations(S)
difference : (%, %) -> %
from SetAggregate(S)
difference : (%, S) -> %
from SetAggregate(S)
empty : () -> %
from Aggregate
empty? : % -> Boolean
from Aggregate
enumerate : () -> List(%) if S has Finite
from Finite
eq? : (%, %) -> Boolean
from Aggregate
eval : (%, S, S) -> % if S has Evalable(S)
from InnerEvalable(S, S)
eval : (%, Equation(S)) -> % if S has Evalable(S)
from Evalable(S)
eval : (%, List(S), List(S)) -> % if S has Evalable(S)
from InnerEvalable(S, S)
eval : (%, List(Equation(S))) -> % if S has Evalable(S)
from Evalable(S)
every? : (Mapping(Boolean, S), %) -> Boolean
from HomogeneousAggregate(S)
extract! : % -> S
from BagAggregate(S)
find : (Mapping(Boolean, S), %) -> Union(S, "failed")
from Collection(S)
hash : % -> SingleInteger if S has Finite
from Hashable
hashUpdate! : (HashState, %) -> HashState if S has Finite
from Hashable
index : PositiveInteger -> % if S has Finite
from Finite
insert! : (S, %) -> %
from BagAggregate(S)
inspect : % -> S
from BagAggregate(S)
intersect : (%, %) -> %
from SetAggregate(S)
latex : % -> String
from SetCategory
less? : (%, NonNegativeInteger) -> Boolean
from Aggregate
lookup : % -> PositiveInteger if S has Finite
from Finite
map : (Mapping(S, S), %) -> %
from HomogeneousAggregate(S)
map! : (Mapping(S, S), %) -> %
from HomogeneousAggregate(S)
max : % -> S if S has OrderedSet
from HomogeneousAggregate(S)
max : (Mapping(Boolean, S, S), %) -> S
from HomogeneousAggregate(S)
member? : (S, %) -> Boolean
from HomogeneousAggregate(S)
members : % -> List(S)
from HomogeneousAggregate(S)
min : % -> S if S has OrderedSet
from HomogeneousAggregate(S)
more? : (%, NonNegativeInteger) -> Boolean
from Aggregate
parts : % -> List(S)
from HomogeneousAggregate(S)
random : () -> % if S has Finite
from Finite
reduce : (Mapping(S, S, S), %) -> S
from Collection(S)
reduce : (Mapping(S, S, S), %, S) -> S
from Collection(S)
reduce : (Mapping(S, S, S), %, S, S) -> S
from Collection(S)
remove : (S, %) -> %
from Collection(S)
remove : (Mapping(Boolean, S), %) -> %
from Collection(S)
remove! : (S, %) -> %
from DictionaryOperations(S)
remove! : (Mapping(Boolean, S), %) -> %
from DictionaryOperations(S)
removeDuplicates : % -> %
from Collection(S)
sample : () -> %
from Aggregate
select : (Mapping(Boolean, S), %) -> %
from Collection(S)
select! : (Mapping(Boolean, S), %) -> %
from DictionaryOperations(S)
set : () -> %
from SetAggregate(S)
set : List(S) -> %
from SetAggregate(S)
size : () -> NonNegativeInteger if S has Finite
from Finite
size? : (%, NonNegativeInteger) -> Boolean
from Aggregate
smaller? : (%, %) -> Boolean if S has Comparable
from Comparable
subset? : (%, %) -> Boolean
from SetAggregate(S)
symmetricDifference : (%, %) -> %
from SetAggregate(S)
union : (%, %) -> %
from SetAggregate(S)
union : (%, S) -> %
from SetAggregate(S)
union : (S, %) -> %
from SetAggregate(S)
universe : () -> % if S has Finite

universe()$D returns the universal set for finite set aggregate D.

~= : (%, %) -> Boolean
from BasicType

Comparable

ConvertibleTo(InputForm)

InnerEvalable(S, S)

Aggregate

DictionaryOperations(S)

Dictionary(S)

SetCategory

HomogeneousAggregate(S)

Evalable(S)

BagAggregate(S)

PartialOrder

CoercibleTo(OutputForm)

Collection(S)

SetAggregate(S)

finiteAggregate

shallowlyMutable

Hashable

Finite

BasicType