FractionalIdealAsModule(R, F, UP, A, ibasis)

divisor.spad line 462 [edit on github]

Module representation of fractional ideals.

* : (%, %) -> %
from Magma
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
basis : % -> Vector(A)

basis((f1, ..., fn)) = the vector [f1, ..., fn].

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
module : FractionalIdeal(R, F, UP, A) -> % if A has RetractableTo(F)

module(I) returns I viewed has a module over R.

module : Vector(A) -> %

module([f1, ..., fn]) = the module generated by (f1, ..., fn) over R.

norm : % -> F

norm(f) returns the norm of the module f.

one? : % -> Boolean
from MagmaWithUnit
recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from MagmaWithUnit
~= : (%, %) -> Boolean
from BasicType

BasicType

CoercibleTo(OutputForm)

MagmaWithUnit

SemiGroup

Magma

Monoid

SetCategory