InfiniteCyclicGroup(g)
discrgrp.spad line 146
[edit on github]
Infinite cyclic groups.
- * : (%, %) -> %
- from Magma
- / : (%, %) -> %
- from Group
- 1 : () -> %
- from MagmaWithUnit
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- ^ : (%, Integer) -> %
- from Group
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from Group
- conjugate : (%, %) -> %
- from Group
- convert : % -> SExpression
- from ConvertibleTo(SExpression)
- exponent : % -> Integer
exponent(g^k)
returns the representative integer $k
$.
- generator : () -> %
generator()
returns the generator.
- generators : () -> List(%)
- from FinitelyGenerated
- hash : % -> SingleInteger
- from Hashable
- hashUpdate! : (HashState, %) -> HashState
- from Hashable
- inv : % -> %
- from Group
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- one? : % -> Boolean
- from MagmaWithUnit
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from MagmaWithUnit
- smaller? : (%, %) -> Boolean
- from Comparable
- ~= : (%, %) -> Boolean
- from BasicType
FinitelyGenerated
Monoid
SemiGroup
CommutativeStar
TwoSidedRecip
BasicType
unitsKnown
CoercibleTo(OutputForm)
OrderedSet
Group
Magma
SetCategory
Comparable
Hashable
OrderedMonoid
PartialOrder
OrderedSemiGroup
MagmaWithUnit
ConvertibleTo(SExpression)