JetVectorField(JB, D)
jet.spad line 3319
[edit on github]
JetVectorField(JB, D)
implements vector fields over the jet bundle JB
with coefficients from D
. The fields operate on functions from D
.
- * : (%, D) -> %
- from RightModule(D)
- * : (D, %) -> %
- from LeftModule(D)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- coefficient : (%, JB) -> D
coefficient(v, jb)
returns the coefficient of v
in direction jb
.
- coefficients : % -> List(D)
coefficients(v)
yields the coefficients of v
.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
commutator(v, w)
calculates the commutator of two vector fields.
- copy : % -> %
copy(v)
returns a copy of the vector field v
.
- diff : JB -> %
diff(jb)
returns the base vector field in direction jb
.
- diffP : (PositiveInteger, List(NonNegativeInteger)) -> %
diffP(i, mu)
returns the base vector field in direction P(i, mu)
.
- diffU : PositiveInteger -> %
diffU(i)
returns the base vector field in direction U(i)
.
- diffX : PositiveInteger -> %
diffX(i)
returns the base vector field in direction X(i)
.
- directions : % -> List(JB)
directions(v)
yields the directions of the base vectors where v
has non-vanishing coefficients.
- eval : (%, D) -> D
eval(v, f)
applies the vector field v
to the function f
.
- latex : % -> String
- from SetCategory
- lie : (%, %) -> %
lie(v, w)
calculates the Lie derivative of w
with respect to v
. (This yields the commutator of the fields.)
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- prolong : (%, NonNegativeInteger) -> %
prolong(v, q)
prolongs a vector field v
defined on the base space into the jet bundle of order q
.
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- table : List(%) -> TwoDimensionalArray(%)
table(lv)
computes the commutator table for a given list of vector fields.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
RightModule(D)
BasicType
CoercibleTo(OutputForm)
BiModule(D, D)
AbelianMonoid
AbelianGroup
AbelianSemiGroup
Module(D)
LeftModule(D)
CancellationAbelianMonoid
SetCategory