JetBundleFunctionCategory(JB)

jet.spad line 494 [edit on github]

JetBundleFunctionCategory defines the category of functions (local sections) over a jet bundle. The formal derivative is defined already here. It uses the Jacobi matrix of the functions. The columns of the matrices are enumerated by jet variables. Thus they are represented as a Record of the matrix and a list of the jet variables. Several simplification routines are implemented already here.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
D : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
P : List(NonNegativeInteger) -> %

P : NonNegativeInteger -> %

P : (PositiveInteger, List(NonNegativeInteger)) -> %

P : (PositiveInteger, NonNegativeInteger) -> %

U : () -> %

U : PositiveInteger -> %

X : () -> %

X : PositiveInteger -> %

^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
autoReduce : List(%) -> List(%)

autoReduce(sys) tries to simplify a system by solving each equation for its leading term and substituting it into the other equations.

characteristic : () -> NonNegativeInteger
from NonAssociativeRing
class : % -> NonNegativeInteger

class(f) is defined as the highest class of the jet variables effectively occurring in f.

coerce : % -> %
from Algebra(%)
coerce : JB -> %

coerce(jv) coerces the jet variable jv into a local section.

coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
const? : % -> Boolean

const?(f) checks whether f depends of jet variables.

dSubst : (%, JB, %) -> %

dSubst(f, jv, exp) is like subst(f, jv, exp). But additionally for all derivatives of jv the corresponding substitutions are performed.

denominator : % -> %

denominator(f) yields the denominator of f.

differentiate : (%, JB) -> %

differentiate(f, jv) differentiates the function f wrt the jet variable jv.

differentiate : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
dimension : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger

dimension(sys, jm, q) computes the dimension of the manifold described by the system sys with Jacobi matrix jm in the jet bundle of order q.

exquo : (%, %) -> Union(%, "failed")
from EntireRing
extractSymbol : SparseEchelonMatrix(JB, %) -> SparseEchelonMatrix(JB, %)

extractSymbol(jm) extracts the highest order part of the Jacobi matrix.

formalDiff : (%, List(NonNegativeInteger)) -> %

formalDiff(f, mu) formally differentiates f as indicated by the multi-index mu.

formalDiff : (%, PositiveInteger) -> %

formalDiff(f, i) formally (totally) differentiates f wrt the i-th independent variable.

formalDiff : (List(%), PositiveInteger) -> List(%)

formalDiff(sys, i) formally differentiates a family sys of functions wrt the i-th independent variable.

formalDiff2 : (%, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DPhi : %, JVars : List(JB))

formalDiff2(f, i, jm) formally differentiates the function f with the Jacobi matrix jm wrt the i-th independent variable. JVars is a list of the jet variables effectively in the result DPhi (might be too large).

formalDiff2 : (List(%), PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DSys : List(%), JVars : List(List(JB)))

formalDiff2(sys, i, jm) is like the other formalDiff2 but for systems.

freeOf? : (%, JB) -> Boolean

freeOf?(fun, jv) checks whether fun contains the jet variable jv.

gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
getNotation : () -> Symbol

jacobiMatrix : List(%) -> SparseEchelonMatrix(JB, %)

jacobiMatrix(sys) constructs the Jacobi matrix of the family sys of functions.

jacobiMatrix : (List(%), List(List(JB))) -> SparseEchelonMatrix(JB, %)

jacobiMatrix(sys, jvars) constructs the Jacobi matrix of the family sys of functions. jvars contains for each function the effectively occurring jet variables. The columns of the matrix are ordered.

jetVariables : % -> List(JB)

jetVariables(f) yields all jet variables effectively occurring in f in an ordered list.

latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leadingDer : % -> JB

leadingDer(fun) yields the leading derivative of fun. If fun contains no derivatives 1 is returned.

leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
numDepVar : () -> PositiveInteger

numIndVar : () -> PositiveInteger

numerator : % -> %

numerator(f) yields the numerator of f.

one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
order : % -> NonNegativeInteger

order(f) gives highest order of the jet variables effectively occurring in f.

orderDim : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger

orderDim(sys, jm, q) computes the dimension of the manifold described by the system sys with Jacobi matrix jm in the jet bundle of order q over the jet bundle of order q-1.

plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reduceMod : (List(%), List(%)) -> List(%)

reduceMod(sys1, sys2) reduces the system sys1 modulo the system sys2.

retract : % -> JB
from RetractableTo(JB)
retractIfCan : % -> Union(JB, "failed")
from RetractableTo(JB)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
setNotation : Symbol -> Void

simpMod : (List(%), List(%)) -> List(%)

simpMod(sys1, sys2) simplifies the system sys1 modulo the system sys2.

simpMod : (List(%), SparseEchelonMatrix(JB, %), List(%)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))

simpMod(sys1, sys2) simplifies the system sys1 modulo the system sys2. Returns the same information as simplify.

simpOne : % -> %

simpOne(f) removes unnecessary coefficients and exponents, denominators etc.

simplify : (List(%), SparseEchelonMatrix(JB, %)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))

simplify(sys, jm) simplifies a system with given Jacobi matrix. The Jacobi matrix of the simplified system is returned, too. Depend contains for each equation of the simplified system the numbers of the equations of the original system out of which it is build, if it is possible to obtain this information. If one can generate equations of lower order by purely algebraic operations, then simplify should do this.

solveFor : (%, JB) -> Union(%, "failed")

solveFor(fun, jv) tries to solve fun for the jet variable jv.

sortLD : List(%) -> List(%)

sortLD(sys) sorts the functions in sys according to their leading derivatives.

subst : (%, JB, %) -> %

subst(f, jv, exp) substitutes exp for the jet variable jv in the function f.

subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
symbol : List(%) -> SparseEchelonMatrix(JB, %)

symbol(sys) computes directly the symbol of the family sys of functions.

unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

IntegralDomain

noZeroDivisors

RightModule(%)

RetractableTo(JB)

Monoid

GcdDomain

AbelianMonoid

AbelianSemiGroup

Algebra(%)

CommutativeStar

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRng

LeftModule(%)

Module(%)

Magma

SetCategory

LeftOreRing

CoercibleFrom(JB)

Rng

CommutativeRing

SemiGroup

NonAssociativeRing

PartialDifferentialRing(Symbol)

BiModule(%, %)

unitsKnown

AbelianGroup

NonAssociativeSemiRing

NonAssociativeAlgebra(%)

Ring

SemiRng

EntireRing

NonAssociativeSemiRng

BasicType

CoercibleTo(OutputForm)

SemiRing

TwoSidedRecip