JetBundleFunctionCategory(JB)
jet.spad line 494
[edit on github]
JetBundleFunctionCategory defines the category of functions (local sections) over a jet bundle. The formal derivative is defined already here. It uses the Jacobi matrix of the functions. The columns of the matrices are enumerated by jet variables. Thus they are represented as a Record of the matrix and a list of the jet variables. Several simplification routines are implemented already here.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- P : List(NonNegativeInteger) -> %
- P : NonNegativeInteger -> %
- P : (PositiveInteger, List(NonNegativeInteger)) -> %
- P : (PositiveInteger, NonNegativeInteger) -> %
- U : () -> %
- U : PositiveInteger -> %
- X : () -> %
- X : PositiveInteger -> %
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- autoReduce : List(%) -> List(%)
autoReduce(sys)
tries to simplify a system by solving each equation for its leading term and substituting it into the other equations.
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- class : % -> NonNegativeInteger
class(f)
is defined as the highest class of the jet variables effectively occurring in f
.
- coerce : % -> %
- from Algebra(%)
- coerce : JB -> %
coerce(jv)
coerces the jet variable jv
into a local section.
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- const? : % -> Boolean
const?(f)
checks whether f
depends of jet variables.
- dSubst : (%, JB, %) -> %
dSubst(f, jv, exp)
is like subst(f, jv, exp)
. But additionally for all derivatives of jv
the corresponding substitutions are performed.
- denominator : % -> %
denominator(f)
yields the denominator of f
.
- differentiate : (%, JB) -> %
differentiate(f, jv)
differentiates the function f
wrt
the jet variable jv
.
- differentiate : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- dimension : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
dimension(sys, jm, q)
computes the dimension of the manifold described by the system sys
with Jacobi matrix jm
in the jet bundle of order q
.
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extractSymbol : SparseEchelonMatrix(JB, %) -> SparseEchelonMatrix(JB, %)
extractSymbol(jm)
extracts the highest order part of the Jacobi matrix.
- formalDiff : (%, List(NonNegativeInteger)) -> %
formalDiff(f, mu)
formally differentiates f
as indicated by the multi-index mu
.
- formalDiff : (%, PositiveInteger) -> %
formalDiff(f, i)
formally (totally) differentiates f
wrt
the i
-
th independent variable.
- formalDiff : (List(%), PositiveInteger) -> List(%)
formalDiff(sys, i)
formally differentiates a family sys
of functions wrt
the i
-
th independent variable.
- formalDiff2 : (%, PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DPhi : %, JVars : List(JB))
formalDiff2(f, i, jm)
formally differentiates the function f
with the Jacobi matrix jm
wrt
the i
-
th independent variable. JVars
is a list of the jet variables effectively in the result DPhi
(might be too large).
- formalDiff2 : (List(%), PositiveInteger, SparseEchelonMatrix(JB, %)) -> Record(DSys : List(%), JVars : List(List(JB)))
formalDiff2(sys, i, jm)
is like the other formalDiff2
but for systems.
- freeOf? : (%, JB) -> Boolean
freeOf?(fun, jv)
checks whether fun
contains the jet variable jv
.
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- getNotation : () -> Symbol
- jacobiMatrix : List(%) -> SparseEchelonMatrix(JB, %)
jacobiMatrix(sys)
constructs the Jacobi matrix of the family sys
of functions.
- jacobiMatrix : (List(%), List(List(JB))) -> SparseEchelonMatrix(JB, %)
jacobiMatrix(sys, jvars)
constructs the Jacobi matrix of the family sys
of functions. jvars
contains for each function the effectively occurring jet variables. The columns of the matrix are ordered.
- jetVariables : % -> List(JB)
jetVariables(f)
yields all jet variables effectively occurring in f
in an ordered list.
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leadingDer : % -> JB
leadingDer(fun)
yields the leading derivative of fun
. If fun
contains no derivatives 1
is returned.
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- numDepVar : () -> PositiveInteger
- numIndVar : () -> PositiveInteger
- numerator : % -> %
numerator(f)
yields the numerator of f
.
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- order : % -> NonNegativeInteger
order(f)
gives highest order of the jet variables effectively occurring in f
.
- orderDim : (List(%), SparseEchelonMatrix(JB, %), NonNegativeInteger) -> NonNegativeInteger
orderDim(sys, jm, q)
computes the dimension of the manifold described by the system sys
with Jacobi matrix jm
in the jet bundle of order q
over the jet bundle of order q-1
.
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduceMod : (List(%), List(%)) -> List(%)
reduceMod(sys1, sys2)
reduces the system sys1
modulo the system sys2
.
- retract : % -> JB
- from RetractableTo(JB)
- retractIfCan : % -> Union(JB, "failed")
- from RetractableTo(JB)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- setNotation : Symbol -> Void
- simpMod : (List(%), List(%)) -> List(%)
simpMod(sys1, sys2)
simplifies the system sys1
modulo the system sys2
.
- simpMod : (List(%), SparseEchelonMatrix(JB, %), List(%)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))
simpMod(sys1, sys2)
simplifies the system sys1
modulo the system sys2
. Returns the same information as simplify
.
- simpOne : % -> %
simpOne(f)
removes unnecessary coefficients and exponents, denominators etc.
- simplify : (List(%), SparseEchelonMatrix(JB, %)) -> Record(Sys : List(%), JM : SparseEchelonMatrix(JB, %), Depend : Union("failed", List(List(NonNegativeInteger))))
simplify(sys, jm)
simplifies a system with given Jacobi matrix. The Jacobi matrix of the simplified system is returned, too. Depend
contains for each equation of the simplified system the numbers of the equations of the original system out of which it is build, if it is possible to obtain this information. If one can generate equations of lower order by purely algebraic operations, then simplify
should do this.
- solveFor : (%, JB) -> Union(%, "failed")
solveFor(fun, jv)
tries to solve fun
for the jet variable jv
.
- sortLD : List(%) -> List(%)
sortLD(sys)
sorts the functions in sys
according to their leading derivatives.
- subst : (%, JB, %) -> %
subst(f, jv, exp)
substitutes exp
for the jet variable jv
in the function f
.
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- symbol : List(%) -> SparseEchelonMatrix(JB, %)
symbol(sys)
computes directly the symbol of the family sys
of functions.
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
noZeroDivisors
RightModule(%)
RetractableTo(JB)
Monoid
GcdDomain
AbelianMonoid
AbelianSemiGroup
Algebra(%)
CommutativeStar
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRng
LeftModule(%)
Module(%)
Magma
SetCategory
LeftOreRing
CoercibleFrom(JB)
Rng
CommutativeRing
SemiGroup
NonAssociativeRing
PartialDifferentialRing(Symbol)
BiModule(%, %)
unitsKnown
AbelianGroup
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
Ring
SemiRng
EntireRing
NonAssociativeSemiRng
BasicType
CoercibleTo(OutputForm)
SemiRing
TwoSidedRecip