Partition
prtition.spad line 1
[edit on github]
Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus, (5 2 2 1)
will represent s5 * s2^2 * s1
.
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- 0 : () -> %
- from AbelianMonoid
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- coerce : % -> List(Integer)
coerce(p)
coerces a partition into a list of integers
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- conjugate : % -> %
conjugate(p)
returns the conjugate partition of a partition p
- convert : % -> List(Integer)
- from ConvertibleTo(List(Integer))
- latex : % -> String
- from SetCategory
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- partition : List(Integer) -> %
partition(li
)
converts a list of integers li
to a partition
- pdct : % -> Integer
pdct(a1^n1 a2^n2 ...)
returns n1! * a1^n1 * n2! * a2^n2 * ...
. This function is used in the package CycleIndicators.
- powers : List(Integer) -> List(List(Integer))
powers(li
)
returns a list of 2-element lists. For each 2-element list, the first element is an entry of li
and the second element is the multiplicity with which the first element occurs in li
. There is a 2-element list for each value occurring in l
.
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
OrderedCancellationAbelianMonoid
CancellationAbelianMonoid
SetCategory
CoercibleTo(OutputForm)
OrderedAbelianMonoid
OrderedAbelianSemiGroup
AbelianMonoid
Comparable
OrderedSet
BasicType
AbelianSemiGroup
PartialOrder
ConvertibleTo(List(Integer))