matcat.spad line 706 [edit on github]
RectangularMatrixCategory is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be R
-modules and will be non-mutable.
m/r
divides the elements of m
by r
. Error: if r = 0
.
antisymmetric?(m)
returns true
if the matrix m
is square and antisymmetric (i.e. m[i, j] = -m[j, i]
for all i
and j
) and false
otherwise.
column(m, j)
returns the j
th column of the matrix m
. Error: if the index outside the proper range.
columnSpace(m)
returns a sublist of columns of the matrix m
forming a basis of its column space.
diagonal?(m)
returns true
if the matrix m
is square and diagonal (i.e. all entries of m
not on the diagonal are zero) and false
otherwise.
elt(m, i, j)
returns the element in the i
th row and j
th column of the matrix m
. Error: if indices are outside the proper ranges.
elt(m, i, j, r)
returns the element in the i
th row and j
th column of the matrix m
, if m
has an i
th row and a j
th column, and returns r
otherwise.
exquo(m, r)
computes the exact quotient of the elements of m
by r
, returning "failed"
if this is not possible.
listOfLists(m)
returns the rows of the matrix m
as a list of lists.
map(f, a)
returns b
, where b(i, j) = a(i, j)
for all i
, j
.
map(f, a, b)
returns c
, where c
is such that c(i, j) = f(a(i, j), b(i, j))
for all i
, j
.
matrix(l)
converts the list of lists l
to a matrix, where the list of lists is viewed as a list of the rows of the matrix.
maxColIndex(m)
returns the index of the 'last' column of the matrix m
.
maxRowIndex(m)
returns the index of the 'last' row of the matrix m
.
minColIndex(m)
returns the index of the 'first' column of the matrix m
.
minRowIndex(m)
returns the index of the 'first' row of the matrix m
.
ncols(m)
returns the number of columns in the matrix m
.
nrows(m)
returns the number of rows in the matrix m
.
nullSpace(m)
+ returns a basis for the null space of the matrix m
.
nullity(m)
returns the nullity of the matrix m
. This is the dimension of the null space of the matrix m
.
qelt(m, i, j)
returns the element in the i
th row and j
th column of the matrix m
. Note: there is NO error check to determine if indices are in the proper ranges.
rank(m)
returns the rank of the matrix m
.
row(m, i)
returns the i
th row of the matrix m
. Error: if the index is outside the proper range.
rowEchelon(m)
returns the row echelon form of the matrix m
.
square?(m)
returns true
if m
is a square matrix (i.e. if m
has the same number of rows as columns) and false
otherwise.
symmetric?(m)
returns true
if the matrix m
is square and symmetric (i.e. m[i, j] = m[j, i]
for all i
and j
) and false
otherwise.
BiModule(R, R)
LeftModule(R)
InnerEvalable(R, R)
RightModule(R)
Module(R)
Evalable(R)