matcat.spad line 706 [edit on github]
RectangularMatrixCategory is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be R-modules and will be non-mutable.
m/r divides the elements of m by r. Error: if r = 0.
antisymmetric?(m) returns true if the matrix m is square and antisymmetric (i.e. m[i, j] = -m[j, i] for all i and j) and false otherwise.
column(m, j) returns the jth column of the matrix m. Error: if the index outside the proper range.
columnSpace(m) returns a sublist of columns of the matrix m forming a basis of its column space.
diagonal?(m) returns true if the matrix m is square and diagonal (i.e. all entries of m not on the diagonal are zero) and false otherwise.
elt(m, i, j) returns the element in the ith row and jth column of the matrix m. Error: if indices are outside the proper ranges.
elt(m, i, j, r) returns the element in the ith row and jth column of the matrix m, if m has an ith row and a jth column, and returns r otherwise.
exquo(m, r) computes the exact quotient of the elements of m by r, returning "failed" if this is not possible.
listOfLists(m) returns the rows of the matrix m as a list of lists.
map(f, a) returns b, where b(i, j) = a(i, j) for all i, j.
map(f, a, b) returns c, where c is such that c(i, j) = f(a(i, j), b(i, j)) for all i, j.
matrix(l) converts the list of lists l to a matrix, where the list of lists is viewed as a list of the rows of the matrix.
maxColIndex(m) returns the index of the 'last' column of the matrix m.
maxRowIndex(m) returns the index of the 'last' row of the matrix m.
minColIndex(m) returns the index of the 'first' column of the matrix m.
minRowIndex(m) returns the index of the 'first' row of the matrix m.
ncols(m) returns the number of columns in the matrix m.
nrows(m) returns the number of rows in the matrix m.
nullSpace(m)+ returns a basis for the null space of the matrix m.
nullity(m) returns the nullity of the matrix m. This is the dimension of the null space of the matrix m.
qelt(m, i, j) returns the element in the ith row and jth column of the matrix m. Note: there is NO error check to determine if indices are in the proper ranges.
rank(m) returns the rank of the matrix m.
row(m, i) returns the ith row of the matrix m. Error: if the index is outside the proper range.
rowEchelon(m) returns the row echelon form of the matrix m.
square?(m) returns true if m is a square matrix (i.e. if m has the same number of rows as columns) and false otherwise.
symmetric?(m) returns true if the matrix m is square and symmetric (i.e. m[i, j] = m[j, i] for all i and j) and false otherwise.
BiModule(R, R)
LeftModule(R)
InnerEvalable(R, R)
RightModule(R)
Module(R)
Evalable(R)