SquareFreeRegularTriangularSet(R, E, V, P)
sregset.spad line 1135
[edit on github]
This domain provides an implementation of square-free regular chains. Moreover, the operation zeroSetSplit is an implementation of a new algorithm for solving polynomial systems by means of regular chains.
- # : % -> NonNegativeInteger
- from Aggregate
- = : (%, %) -> Boolean
- from BasicType
- algebraic? : (V, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- algebraicCoefficients? : (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P)
- algebraicVariables : % -> List(V)
- from TriangularSetCategory(R, E, V, P)
- any? : (Mapping(Boolean, P), %) -> Boolean
- from HomogeneousAggregate(P)
- augment : (P, %) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- augment : (P, List(%)) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- augment : (List(P), %) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- augment : (List(P), List(%)) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- autoReduced? : (%, Mapping(Boolean, P, List(P))) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- basicSet : (List(P), Mapping(Boolean, P), Mapping(Boolean, P, P)) -> Union(Record(bas : %, top : List(P)), "failed")
- from TriangularSetCategory(R, E, V, P)
- basicSet : (List(P), Mapping(Boolean, P, P)) -> Union(Record(bas : %, top : List(P)), "failed")
- from TriangularSetCategory(R, E, V, P)
- coHeight : % -> NonNegativeInteger if V has Finite
- from TriangularSetCategory(R, E, V, P)
- coerce : % -> List(P)
- from CoercibleTo(List(P))
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- collect : (%, V) -> %
- from PolynomialSetCategory(R, E, V, P)
- collectQuasiMonic : % -> %
- from TriangularSetCategory(R, E, V, P)
- collectUnder : (%, V) -> %
- from PolynomialSetCategory(R, E, V, P)
- collectUpper : (%, V) -> %
- from PolynomialSetCategory(R, E, V, P)
- construct : List(P) -> %
- from Collection(P)
- convert : % -> InputForm
- from ConvertibleTo(InputForm)
- copy : % -> %
- from Aggregate
- count : (P, %) -> NonNegativeInteger
- from HomogeneousAggregate(P)
- count : (Mapping(Boolean, P), %) -> NonNegativeInteger
- from HomogeneousAggregate(P)
- degree : % -> NonNegativeInteger
- from TriangularSetCategory(R, E, V, P)
- empty : () -> %
- from Aggregate
- empty? : % -> Boolean
- from Aggregate
- eq? : (%, %) -> Boolean
- from Aggregate
- eval : (%, P, P) -> % if P has Evalable(P)
- from InnerEvalable(P, P)
- eval : (%, Equation(P)) -> % if P has Evalable(P)
- from Evalable(P)
- eval : (%, List(P), List(P)) -> % if P has Evalable(P)
- from InnerEvalable(P, P)
- eval : (%, List(Equation(P))) -> % if P has Evalable(P)
- from Evalable(P)
- every? : (Mapping(Boolean, P), %) -> Boolean
- from HomogeneousAggregate(P)
- extend : (%, P) -> %
- from TriangularSetCategory(R, E, V, P)
- extend : (P, %) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- extend : (P, List(%)) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- extend : (List(P), %) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- extend : (List(P), List(%)) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- extendIfCan : (%, P) -> Union(%, "failed")
- from TriangularSetCategory(R, E, V, P)
- find : (Mapping(Boolean, P), %) -> Union(P, "failed")
- from Collection(P)
- first : % -> Union(P, "failed")
- from TriangularSetCategory(R, E, V, P)
- headReduce : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- headReduced? : % -> Boolean
- from TriangularSetCategory(R, E, V, P)
- headReduced? : (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- headRemainder : (P, %) -> Record(num : P, den : R)
- from PolynomialSetCategory(R, E, V, P)
- iexactQuo : (R, R) -> R
- from PolynomialSetCategory(R, E, V, P)
- infRittWu? : (%, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- initiallyReduce : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- initiallyReduced? : % -> Boolean
- from TriangularSetCategory(R, E, V, P)
- initiallyReduced? : (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- initials : % -> List(P)
- from TriangularSetCategory(R, E, V, P)
- internalAugment : (P, %) -> %
- from RegularTriangularSetCategory(R, E, V, P)
- internalAugment : (List(P), %) -> %
- from RegularTriangularSetCategory(R, E, V, P)
- internalAugment : (P, %, Boolean, Boolean, Boolean, Boolean, Boolean) -> List(%)
internalAugment(p, ts, b1, b2, b3, b4, b5)
is an internal subroutine, exported only for development.
- internalZeroSetSplit : (List(P), Boolean, Boolean, Boolean) -> List(%)
internalZeroSetSplit(lp, b1, b2, b3)
is an internal subroutine, exported only for development.
- intersect : (P, %) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- intersect : (P, List(%)) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- intersect : (List(P), %) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- intersect : (List(P), List(%)) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- invertible? : (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P)
- invertible? : (P, %) -> List(Record(val : Boolean, tower : %))
- from RegularTriangularSetCategory(R, E, V, P)
- invertibleElseSplit? : (P, %) -> Union(Boolean, List(%))
- from RegularTriangularSetCategory(R, E, V, P)
- invertibleSet : (P, %) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- last : % -> Union(P, "failed")
- from TriangularSetCategory(R, E, V, P)
- lastSubResultant : (P, P, %) -> List(Record(val : P, tower : %))
- from RegularTriangularSetCategory(R, E, V, P)
- lastSubResultantElseSplit : (P, P, %) -> Union(P, List(%))
- from RegularTriangularSetCategory(R, E, V, P)
- latex : % -> String
- from SetCategory
- less? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- mainVariable? : (V, %) -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- mainVariables : % -> List(V)
- from PolynomialSetCategory(R, E, V, P)
- map : (Mapping(P, P), %) -> %
- from HomogeneousAggregate(P)
- map! : (Mapping(P, P), %) -> %
- from HomogeneousAggregate(P)
- max : % -> P if P has OrderedSet
- from HomogeneousAggregate(P)
- max : (Mapping(Boolean, P, P), %) -> P
- from HomogeneousAggregate(P)
- member? : (P, %) -> Boolean
- from HomogeneousAggregate(P)
- members : % -> List(P)
- from HomogeneousAggregate(P)
- min : % -> P if P has OrderedSet
- from HomogeneousAggregate(P)
- more? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- mvar : % -> V
- from PolynomialSetCategory(R, E, V, P)
- normalized? : % -> Boolean
- from TriangularSetCategory(R, E, V, P)
- normalized? : (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- parts : % -> List(P)
- from HomogeneousAggregate(P)
- pre_process : (List(P), Boolean, Boolean) -> Record(val : List(P), towers : List(%))
pre_process(lp, b1, b2)
is an internal subroutine, exported only for development.
- purelyAlgebraic? : % -> Boolean
- from RegularTriangularSetCategory(R, E, V, P)
- purelyAlgebraic? : (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P)
- purelyAlgebraicLeadingMonomial? : (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P)
- purelyTranscendental? : (P, %) -> Boolean
- from RegularTriangularSetCategory(R, E, V, P)
- quasiComponent : % -> Record(close : List(P), open : List(P))
- from TriangularSetCategory(R, E, V, P)
- reduce : (P, %, Mapping(P, P, P), Mapping(Boolean, P, P)) -> P
- from TriangularSetCategory(R, E, V, P)
- reduce : (Mapping(P, P, P), %) -> P
- from Collection(P)
- reduce : (Mapping(P, P, P), %, P) -> P
- from Collection(P)
- reduce : (Mapping(P, P, P), %, P, P) -> P
- from Collection(P)
- reduceByQuasiMonic : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- reduced? : (P, %, Mapping(Boolean, P, P)) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- remainder : (P, %) -> Record(rnum : R, polnum : P, den : R)
- from PolynomialSetCategory(R, E, V, P)
- remove : (P, %) -> %
- from Collection(P)
- remove : (Mapping(Boolean, P), %) -> %
- from Collection(P)
- removeDuplicates : % -> %
- from Collection(P)
- removeZero : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- rest : % -> Union(%, "failed")
- from TriangularSetCategory(R, E, V, P)
- retract : List(P) -> %
- from RetractableFrom(List(P))
- retractIfCan : List(P) -> Union(%, "failed")
- from RetractableFrom(List(P))
- rewriteIdealWithHeadRemainder : (List(P), %) -> List(P)
- from PolynomialSetCategory(R, E, V, P)
- rewriteIdealWithRemainder : (List(P), %) -> List(P)
- from PolynomialSetCategory(R, E, V, P)
- rewriteSetWithReduction : (List(P), %, Mapping(P, P, P), Mapping(Boolean, P, P)) -> List(P)
- from TriangularSetCategory(R, E, V, P)
- roughBase? : % -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- roughEqualIdeals? : (%, %) -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- roughSubIdeal? : (%, %) -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- roughUnitIdeal? : % -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- sample : () -> %
- from Aggregate
- select : (Mapping(Boolean, P), %) -> %
- from Collection(P)
- select : (%, V) -> Union(P, "failed")
- from TriangularSetCategory(R, E, V, P)
- size? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- sort : (%, V) -> Record(under : %, floor : %, upper : %)
- from PolynomialSetCategory(R, E, V, P)
- squareFreePart : (P, %) -> List(Record(val : P, tower : %))
- from RegularTriangularSetCategory(R, E, V, P)
- stronglyReduce : (P, %) -> P
- from TriangularSetCategory(R, E, V, P)
- stronglyReduced? : % -> Boolean
- from TriangularSetCategory(R, E, V, P)
- stronglyReduced? : (P, %) -> Boolean
- from TriangularSetCategory(R, E, V, P)
- triangular? : % -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- trivialIdeal? : % -> Boolean
- from PolynomialSetCategory(R, E, V, P)
- variables : % -> List(V)
- from PolynomialSetCategory(R, E, V, P)
- zeroSetSplit : List(P) -> List(%)
- from TriangularSetCategory(R, E, V, P)
- zeroSetSplit : (List(P), Boolean) -> List(%)
- from RegularTriangularSetCategory(R, E, V, P)
- zeroSetSplit : (List(P), Boolean, Boolean) -> List(%)
zeroSetSplit(lp, clos?, info?)
has the same specifications as zeroSetSplit from RegularTriangularSetCategory Moreover, if clos?
then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If info?
then do print messages during the computations.
- zeroSetSplit : (List(P), Boolean, Boolean, Boolean, Boolean) -> List(%)
zeroSetSplit(lp, b1, b2.b3, b4)
is an internal subroutine, exported only for development.
- zeroSetSplitIntoTriangularSystems : List(P) -> List(Record(close : %, open : List(P)))
- from TriangularSetCategory(R, E, V, P)
- ~= : (%, %) -> Boolean
- from BasicType
ConvertibleTo(InputForm)
Collection(P)
Aggregate
RegularTriangularSetCategory(R, E, V, P)
HomogeneousAggregate(P)
BasicType
PolynomialSetCategory(R, E, V, P)
CoercibleTo(List(P))
InnerEvalable(P, P)
Evalable(P)
TriangularSetCategory(R, E, V, P)
SetCategory
CoercibleTo(OutputForm)
SquareFreeRegularTriangularSetCategory(R, E, V, P)
finiteAggregate
shallowlyMutable
RetractableFrom(List(P))