AntiSymm(R, lVar)

derham.spad line 94 [edit on github]

The domain of antisymmetric polynomials.

* : (%, %) -> %
from Magma
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coefficient : (%, %) -> R

coefficient(p, u) returns the coefficient of the term in p containing the basis term u if such a term exists, and 0 otherwise. Error: if the second argument u is not a basis element.

coerce : R -> %
from LeftAlgebra(R)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
degree : % -> NonNegativeInteger

degree(p) returns the homogeneous degree of p.

exp : List(Integer) -> %

exp([i1, ...in]) returns u_1^i_1 ... u_n^i_n

generator : NonNegativeInteger -> %

generator(n) returns the nth multiplicative generator, a basis term.

homogeneous? : % -> Boolean

homogeneous?(p) tests if all of the terms of p have the same degree.

latex : % -> String
from SetCategory
leadingBasisTerm : % -> %

leadingBasisTerm(p) returns the leading basis term of antisymmetric polynomial p.

leadingCoefficient : % -> R

leadingCoefficient(p) returns the leading coefficient of antisymmetric polynomial p.

leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
map : (Mapping(R, R), %) -> %

map(f, p) changes each coefficient of p by the application of f.

one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
recip : % -> Union(%, "failed")
from MagmaWithUnit
reductum : % -> %

reductum(p), where p is an antisymmetric polynomial, returns p minus the leading term of p if p has at least two terms, and 0 otherwise.

retract : % -> R
from RetractableTo(R)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractable? : % -> Boolean

retractable?(p) tests if p is a 0-form, i.e. if degree(p) = 0.

rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

RightModule(%)

RetractableTo(R)

Monoid

Ring

SemiGroup

CancellationAbelianMonoid

LeftAlgebra(R)

CoercibleTo(OutputForm)

BasicType

unitsKnown

NonAssociativeRing

Rng

Magma

NonAssociativeSemiRng

SemiRing

LeftModule(%)

AbelianGroup

NonAssociativeSemiRing

SetCategory

CoercibleFrom(R)

AbelianSemiGroup

AbelianMonoid

BiModule(%, %)

NonAssociativeRng

LeftModule(R)

MagmaWithUnit

SemiRng