distro.spad line 595 [edit on github]
Category of distributions formally given by moments.
0 is the Dirac distribution
x^k constructs the distribution of the kth power of the random variable with distribution X by picking every k-th moment.
booleanConvolution(x, y) returns the boolean convolution of the distributions x and y
booleanCumulant(x, n) returns the n-th boolean cumulant of the distribution x
booleanCumulants(x) returns the sequence of boolean cumulants of the distribution x.
classicalConvolution(x, y) returns the classical convolution of the distributions x and y
classicalCumulant(x, n) returns the n-th classical cumulant of the distribution x
classicalCumulants(x) returns sequence of classical cumulants of the distribution x
freeConvolution(x, y) returns the free convolution of the distributions x and y
freeCumulant(x, n) returns the n-th free cumulant of the distribution x
freeCumulants(x) returns the sequence of free cumulants of the distribution x.
hankelDeterminants(x) returns the stream of hankel determinants of the distribution x.
jacobiParameters(x) returns the pair of streams of Jacobi parameters of the distribution x.
jacobiParameters(x) returns the pair of streams of Jacobi parameters of the distribution x.
moment(x, n) returns the n-th moment of the distribution x
moments(x) returns the sequence of moments of the distribution x
monotoneConvolution(x, y) returns the monotone convolution of the distributions x and y
monotoneCumulants(x) returns the sequence of monotone cumulants of the distribution x.
orthogonalConvolution(x, y) returns the orthogonal convolution of the distributions x and y
orthogonalPolynomials(x) returns the stream of orthogonal polynomials.
orthogonalPolynomials(x) returns the stream of orthogonal polynomials.
subordinationConvolution(x, y) returns the subordination convolution of the distributions x and y