FreeLieAlgebra(VarSet, R)
xlpoly.spad line 325
[edit on github]
The category of free Lie algebras. It is used by domains of non-commutative algebra: LiePolynomial and XPBWPolynomial. Author: Michel Petitot (petitot@lifl.fr)
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from LieAlgebra(R)
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- LiePoly : LyndonWord(VarSet) -> %
LiePoly(l) returns the bracketed form of l as a Lie polynomial.
- coef : (XRecursivePolynomial(VarSet, R), %) -> R
coef(x, y) returns the scalar product of x by y, the set of words being regarded as an orthogonal basis.
- coerce : VarSet -> %
coerce(x) returns x as a Lie polynomial.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> XDistributedPolynomial(VarSet, R)
coerce(x) returns x as distributed polynomial.
- coerce : % -> XRecursivePolynomial(VarSet, R)
coerce(x) returns x as a recursive polynomial.
- construct : (%, %) -> %
- from LieAlgebra(R)
- degree : % -> NonNegativeInteger
degree(x) returns the greatest length of a word in the support of x.
- eval : (%, VarSet, %) -> %
eval(p, x, v) replaces x by v in p.
- eval : (%, List(VarSet), List(%)) -> %
eval(p, [x1, ..., xn], [v1, ..., vn]) replaces xi by vi in p.
- latex : % -> String
- from SetCategory
- lquo : (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
lquo(x, y) returns the left simplification of x by y.
- mirror : % -> %
mirror(x) returns Sum(r_i mirror(w_i)) if x is Sum(r_i w_i).
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- rquo : (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
rquo(x, y) returns the right simplification of x by y.
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- trunc : (%, NonNegativeInteger) -> %
trunc(p, n) returns the polynomial p truncated at order n.
- varList : % -> List(VarSet)
varList(x) returns the list of distinct entries of x.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
BiModule(R, R)
CancellationAbelianMonoid
LeftModule(R)
RightModule(R)
Module(R)
AbelianGroup
LieAlgebra(R)
AbelianSemiGroup
SetCategory
AbelianMonoid
BasicType
CoercibleTo(OutputForm)