XDistributedPolynomial(vl, R)

xpoly.spad line 294 [edit on github]

This type supports distributed multivariate polynomials whose variables do not commute. The coefficient ring may be non-commutative too. However, coefficients and variables commute.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from XFreeAlgebra(vl, R)
* : (R, %) -> %
from LeftModule(R)
* : (vl, %) -> %
from XFreeAlgebra(vl, R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coef : (%, %) -> R
from XFreeAlgebra(vl, R)
coef : (%, FreeMonoid(vl)) -> R
from XFreeAlgebra(vl, R)
coefficient : (%, FreeMonoid(vl)) -> R
from FreeModuleCategory(R, FreeMonoid(vl))
coefficients : % -> List(R)
from FreeModuleCategory(R, FreeMonoid(vl))
coerce : R -> %
from XAlgebra(R)
coerce : vl -> %
from XFreeAlgebra(vl, R)
coerce : FreeMonoid(vl) -> %
from CoercibleFrom(FreeMonoid(vl))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
constant : % -> R
from XFreeAlgebra(vl, R)
constant? : % -> Boolean
from XFreeAlgebra(vl, R)
construct : List(Record(k : FreeMonoid(vl), c : R)) -> %
from IndexedProductCategory(R, FreeMonoid(vl))
constructOrdered : List(Record(k : FreeMonoid(vl), c : R)) -> % if FreeMonoid(vl) has Comparable
from IndexedProductCategory(R, FreeMonoid(vl))
degree : % -> NonNegativeInteger
from XPolynomialsCat(vl, R)
latex : % -> String
from SetCategory
leadingCoefficient : % -> R if FreeMonoid(vl) has Comparable
from IndexedProductCategory(R, FreeMonoid(vl))
leadingMonomial : % -> % if FreeMonoid(vl) has Comparable
from IndexedProductCategory(R, FreeMonoid(vl))
leadingSupport : % -> FreeMonoid(vl) if FreeMonoid(vl) has Comparable
from IndexedProductCategory(R, FreeMonoid(vl))
leadingTerm : % -> Record(k : FreeMonoid(vl), c : R) if FreeMonoid(vl) has Comparable
from IndexedProductCategory(R, FreeMonoid(vl))
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearExtend : (Mapping(R, FreeMonoid(vl)), %) -> R if R has CommutativeRing
from FreeModuleCategory(R, FreeMonoid(vl))
listOfTerms : % -> List(Record(k : FreeMonoid(vl), c : R))
from IndexedDirectProductCategory(R, FreeMonoid(vl))
lquo : (%, %) -> %
from XFreeAlgebra(vl, R)
lquo : (%, vl) -> %
from XFreeAlgebra(vl, R)
lquo : (%, FreeMonoid(vl)) -> %
from XFreeAlgebra(vl, R)
map : (Mapping(R, R), %) -> %
from XFreeAlgebra(vl, R)
maxdeg : % -> FreeMonoid(vl)
from XPolynomialsCat(vl, R)
mindeg : % -> FreeMonoid(vl)
from XFreeAlgebra(vl, R)
mindegTerm : % -> Record(k : FreeMonoid(vl), c : R)
from XFreeAlgebra(vl, R)
mirror : % -> %
from XFreeAlgebra(vl, R)
monomial : (R, FreeMonoid(vl)) -> %
from XFreeAlgebra(vl, R)
monomial? : % -> Boolean
from XFreeAlgebra(vl, R)
monomials : % -> List(%)
from FreeModuleCategory(R, FreeMonoid(vl))
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, FreeMonoid(vl))
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra(R)
quasiRegular : % -> %
from XFreeAlgebra(vl, R)
quasiRegular? : % -> Boolean
from XFreeAlgebra(vl, R)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reductum : % -> % if FreeMonoid(vl) has Comparable
from IndexedProductCategory(R, FreeMonoid(vl))
retract : % -> R
from RetractableTo(R)
retract : % -> FreeMonoid(vl)
from RetractableTo(FreeMonoid(vl))
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(FreeMonoid(vl), "failed")
from RetractableTo(FreeMonoid(vl))
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
rquo : (%, %) -> %
from XFreeAlgebra(vl, R)
rquo : (%, vl) -> %
from XFreeAlgebra(vl, R)
rquo : (%, FreeMonoid(vl)) -> %
from XFreeAlgebra(vl, R)
sample : () -> %
from AbelianMonoid
sh : (%, %) -> % if R has CommutativeRing
from XFreeAlgebra(vl, R)
sh : (%, NonNegativeInteger) -> % if R has CommutativeRing
from XFreeAlgebra(vl, R)
smaller? : (%, %) -> Boolean if R has Comparable and FreeMonoid(vl) has Comparable
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(FreeMonoid(vl))
from FreeModuleCategory(R, FreeMonoid(vl))
trunc : (%, NonNegativeInteger) -> %
from XPolynomialsCat(vl, R)
varList : % -> List(vl)
from XFreeAlgebra(vl, R)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

CoercibleFrom(R)

Algebra(R)

noZeroDivisors

RightModule(%)

Monoid

BiModule(R, R)

NonAssociativeAlgebra(R)

CoercibleFrom(FreeMonoid(vl))

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

AbelianGroup

RetractableTo(FreeMonoid(vl))

LeftModule(%)

LeftModule(R)

SetCategory

BiModule(%, %)

CoercibleTo(OutputForm)

Rng

SemiGroup

Magma

XFreeAlgebra(vl, R)

XAlgebra(R)

IndexedProductCategory(R, FreeMonoid(vl))

unitsKnown

XPolynomialsCat(vl, R)

AbelianSemiGroup

FreeModuleCategory(R, FreeMonoid(vl))

NonAssociativeSemiRing

AbelianProductCategory(R)

Module(R)

IndexedDirectProductCategory(R, FreeMonoid(vl))

RetractableTo(R)

NonAssociativeRng

Ring

RightModule(R)

SemiRng

AbelianMonoid

NonAssociativeSemiRng

BasicType

SemiRing