XDistributedPolynomial(vl, R)
xpoly.spad line 294
[edit on github]
This type supports distributed multivariate polynomials whose variables do not commute. The coefficient ring may be non-commutative too. However, coefficients and variables commute.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from XFreeAlgebra(vl, R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (vl, %) -> %
- from XFreeAlgebra(vl, R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coef : (%, %) -> R
- from XFreeAlgebra(vl, R)
- coef : (%, FreeMonoid(vl)) -> R
- from XFreeAlgebra(vl, R)
- coefficient : (%, FreeMonoid(vl)) -> R
- from FreeModuleCategory(R, FreeMonoid(vl))
- coefficients : % -> List(R)
- from FreeModuleCategory(R, FreeMonoid(vl))
- coerce : R -> %
- from XAlgebra(R)
- coerce : vl -> %
- from XFreeAlgebra(vl, R)
- coerce : FreeMonoid(vl) -> %
- from CoercibleFrom(FreeMonoid(vl))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- constant : % -> R
- from XFreeAlgebra(vl, R)
- constant? : % -> Boolean
- from XFreeAlgebra(vl, R)
- construct : List(Record(k : FreeMonoid(vl), c : R)) -> %
- from IndexedProductCategory(R, FreeMonoid(vl))
- constructOrdered : List(Record(k : FreeMonoid(vl), c : R)) -> % if FreeMonoid(vl) has Comparable
- from IndexedProductCategory(R, FreeMonoid(vl))
- degree : % -> NonNegativeInteger
- from XPolynomialsCat(vl, R)
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R if FreeMonoid(vl) has Comparable
- from IndexedProductCategory(R, FreeMonoid(vl))
- leadingMonomial : % -> % if FreeMonoid(vl) has Comparable
- from IndexedProductCategory(R, FreeMonoid(vl))
- leadingSupport : % -> FreeMonoid(vl) if FreeMonoid(vl) has Comparable
- from IndexedProductCategory(R, FreeMonoid(vl))
- leadingTerm : % -> Record(k : FreeMonoid(vl), c : R) if FreeMonoid(vl) has Comparable
- from IndexedProductCategory(R, FreeMonoid(vl))
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, FreeMonoid(vl)), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, FreeMonoid(vl))
- listOfTerms : % -> List(Record(k : FreeMonoid(vl), c : R))
- from IndexedDirectProductCategory(R, FreeMonoid(vl))
- lquo : (%, %) -> %
- from XFreeAlgebra(vl, R)
- lquo : (%, vl) -> %
- from XFreeAlgebra(vl, R)
- lquo : (%, FreeMonoid(vl)) -> %
- from XFreeAlgebra(vl, R)
- map : (Mapping(R, R), %) -> %
- from XFreeAlgebra(vl, R)
- maxdeg : % -> FreeMonoid(vl)
- from XPolynomialsCat(vl, R)
- mindeg : % -> FreeMonoid(vl)
- from XFreeAlgebra(vl, R)
- mindegTerm : % -> Record(k : FreeMonoid(vl), c : R)
- from XFreeAlgebra(vl, R)
- mirror : % -> %
- from XFreeAlgebra(vl, R)
- monomial : (R, FreeMonoid(vl)) -> %
- from XFreeAlgebra(vl, R)
- monomial? : % -> Boolean
- from XFreeAlgebra(vl, R)
- monomials : % -> List(%)
- from FreeModuleCategory(R, FreeMonoid(vl))
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, FreeMonoid(vl))
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- quasiRegular : % -> %
- from XFreeAlgebra(vl, R)
- quasiRegular? : % -> Boolean
- from XFreeAlgebra(vl, R)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> % if FreeMonoid(vl) has Comparable
- from IndexedProductCategory(R, FreeMonoid(vl))
- retract : % -> R
- from RetractableTo(R)
- retract : % -> FreeMonoid(vl)
- from RetractableTo(FreeMonoid(vl))
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(FreeMonoid(vl), "failed")
- from RetractableTo(FreeMonoid(vl))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rquo : (%, %) -> %
- from XFreeAlgebra(vl, R)
- rquo : (%, vl) -> %
- from XFreeAlgebra(vl, R)
- rquo : (%, FreeMonoid(vl)) -> %
- from XFreeAlgebra(vl, R)
- sample : () -> %
- from AbelianMonoid
- sh : (%, %) -> % if R has CommutativeRing
- from XFreeAlgebra(vl, R)
- sh : (%, NonNegativeInteger) -> % if R has CommutativeRing
- from XFreeAlgebra(vl, R)
- smaller? : (%, %) -> Boolean if R has Comparable and FreeMonoid(vl) has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(FreeMonoid(vl))
- from FreeModuleCategory(R, FreeMonoid(vl))
- trunc : (%, NonNegativeInteger) -> %
- from XPolynomialsCat(vl, R)
- varList : % -> List(vl)
- from XFreeAlgebra(vl, R)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
CoercibleFrom(R)
Algebra(R)
noZeroDivisors
RightModule(%)
Monoid
BiModule(R, R)
NonAssociativeAlgebra(R)
CoercibleFrom(FreeMonoid(vl))
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
RetractableTo(FreeMonoid(vl))
LeftModule(%)
LeftModule(R)
SetCategory
BiModule(%, %)
CoercibleTo(OutputForm)
Rng
SemiGroup
Magma
XFreeAlgebra(vl, R)
XAlgebra(R)
IndexedProductCategory(R, FreeMonoid(vl))
unitsKnown
XPolynomialsCat(vl, R)
AbelianSemiGroup
FreeModuleCategory(R, FreeMonoid(vl))
NonAssociativeSemiRing
AbelianProductCategory(R)
Module(R)
IndexedDirectProductCategory(R, FreeMonoid(vl))
RetractableTo(R)
NonAssociativeRng
Ring
RightModule(R)
SemiRng
AbelianMonoid
NonAssociativeSemiRng
BasicType
SemiRing