XPolynomialsCat(vl, R)
xpoly.spad line 108
[edit on github]
The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with variables.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from XFreeAlgebra(vl, R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (vl, %) -> %
- from XFreeAlgebra(vl, R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coef : (%, %) -> R
- from XFreeAlgebra(vl, R)
- coef : (%, FreeMonoid(vl)) -> R
- from XFreeAlgebra(vl, R)
- coerce : R -> %
- from XAlgebra(R)
- coerce : vl -> %
- from XFreeAlgebra(vl, R)
- coerce : FreeMonoid(vl) -> %
- from CoercibleFrom(FreeMonoid(vl))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- constant : % -> R
- from XFreeAlgebra(vl, R)
- constant? : % -> Boolean
- from XFreeAlgebra(vl, R)
- degree : % -> NonNegativeInteger
degree(p)
returns the degree of p
. Note that the degree of a word is its length.
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- lquo : (%, %) -> %
- from XFreeAlgebra(vl, R)
- lquo : (%, vl) -> %
- from XFreeAlgebra(vl, R)
- lquo : (%, FreeMonoid(vl)) -> %
- from XFreeAlgebra(vl, R)
- map : (Mapping(R, R), %) -> %
- from XFreeAlgebra(vl, R)
- maxdeg : % -> FreeMonoid(vl)
maxdeg(p)
returns the greatest leading word in the support of p
.
- mindeg : % -> FreeMonoid(vl)
- from XFreeAlgebra(vl, R)
- mindegTerm : % -> Record(k : FreeMonoid(vl), c : R)
- from XFreeAlgebra(vl, R)
- mirror : % -> %
- from XFreeAlgebra(vl, R)
- monomial : (R, FreeMonoid(vl)) -> %
- from XFreeAlgebra(vl, R)
- monomial? : % -> Boolean
- from XFreeAlgebra(vl, R)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- quasiRegular : % -> %
- from XFreeAlgebra(vl, R)
- quasiRegular? : % -> Boolean
- from XFreeAlgebra(vl, R)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- retract : % -> R
- from RetractableTo(R)
- retract : % -> FreeMonoid(vl)
- from RetractableTo(FreeMonoid(vl))
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(FreeMonoid(vl), "failed")
- from RetractableTo(FreeMonoid(vl))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rquo : (%, %) -> %
- from XFreeAlgebra(vl, R)
- rquo : (%, vl) -> %
- from XFreeAlgebra(vl, R)
- rquo : (%, FreeMonoid(vl)) -> %
- from XFreeAlgebra(vl, R)
- sample : () -> %
- from AbelianMonoid
- sh : (%, %) -> % if R has CommutativeRing
- from XFreeAlgebra(vl, R)
- sh : (%, NonNegativeInteger) -> % if R has CommutativeRing
- from XFreeAlgebra(vl, R)
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- trunc : (%, NonNegativeInteger) -> %
trunc(p, n)
returns the polynomial p
truncated at order n
.
- varList : % -> List(vl)
- from XFreeAlgebra(vl, R)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CoercibleFrom(R)
Algebra(R)
noZeroDivisors
RightModule(%)
Monoid
BiModule(R, R)
NonAssociativeAlgebra(R)
CoercibleFrom(FreeMonoid(vl))
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
NonAssociativeSemiRng
RetractableTo(FreeMonoid(vl))
LeftModule(R)
LeftModule(%)
SetCategory
BiModule(%, %)
Rng
SemiGroup
Magma
XAlgebra(R)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
Module(R)
XFreeAlgebra(vl, R)
RightModule(R)
RetractableTo(R)
NonAssociativeRng
Ring
SemiRng
AbelianMonoid
BasicType
SemiRing