XFreeAlgebra(vl, R)
xpoly.spad line 28
[edit on github]
This category specifies operations for polynomials and formal series with non-commutative variables.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
x * r returns the product of x by r. Useful if R is a non-commutative Ring.
- * : (R, %) -> %
- from LeftModule(R)
- * : (vl, %) -> %
v * x returns the product of a variable x by x.
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coef : (%, %) -> R
coef(x, y) returns scalar product of x by y, the set of words being regarded as an orthogonal basis.
- coef : (%, FreeMonoid(vl)) -> R
coef(x, w) returns the coefficient of the word w in x.
- coerce : R -> %
- from XAlgebra(R)
- coerce : vl -> %
coerce(v) returns v.
- coerce : FreeMonoid(vl) -> %
- from CoercibleFrom(FreeMonoid(vl))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- constant : % -> R
constant(x) returns the constant term of x.
- constant? : % -> Boolean
constant?(x) returns true if x is constant.
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- lquo : (%, %) -> %
lquo(x, y) returns the left simplification of x by y.
- lquo : (%, vl) -> %
lquo(x, v) returns the left simplification of x by the variable v.
- lquo : (%, FreeMonoid(vl)) -> %
lquo(x, w) returns the left simplification of x by the word w.
- map : (Mapping(R, R), %) -> %
map(fn, x) returns Sum(fn(r_i) w_i) if x writes Sum(r_i w_i).
- mindeg : % -> FreeMonoid(vl)
mindeg(x) returns the little word which appears in x. Error if x=0.
- mindegTerm : % -> Record(k : FreeMonoid(vl), c : R)
mindegTerm(x) returns the term whose word is mindeg(x).
- mirror : % -> %
mirror(x) returns Sum(r_i mirror(w_i)) if x writes Sum(r_i w_i).
- monomial : (R, FreeMonoid(vl)) -> %
monomial(r, w) returns the product of the word w by the coefficient r.
- monomial? : % -> Boolean
monomial?(x) returns true if x is a monomial
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- quasiRegular : % -> %
quasiRegular(x) return x minus its constant term.
- quasiRegular? : % -> Boolean
quasiRegular?(x) return true if constant(x) is zero.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- retract : % -> R
- from RetractableTo(R)
- retract : % -> FreeMonoid(vl)
- from RetractableTo(FreeMonoid(vl))
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(FreeMonoid(vl), "failed")
- from RetractableTo(FreeMonoid(vl))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rquo : (%, %) -> %
rquo(x, y) returns the right simplification of x by y.
- rquo : (%, vl) -> %
rquo(x, v) returns the right simplification of x by the variable v.
- rquo : (%, FreeMonoid(vl)) -> %
rquo(x, w) returns the right simplification of x by w.
- sample : () -> %
- from AbelianMonoid
- sh : (%, %) -> % if R has CommutativeRing
sh(x, y) returns the shuffle-product of x by y. This multiplication is associative and commutative.
- sh : (%, NonNegativeInteger) -> % if R has CommutativeRing
sh(x, n) returns the shuffle power of x to the n.
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- varList : % -> List(vl)
varList(x) returns the list of variables which appear in x.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
noZeroDivisors
CoercibleFrom(R)
Algebra(R)
RightModule(%)
Monoid
BiModule(R, R)
NonAssociativeAlgebra(R)
CoercibleFrom(FreeMonoid(vl))
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
RightModule(R)
BiModule(%, %)
RetractableTo(FreeMonoid(vl))
LeftModule(%)
LeftModule(R)
SetCategory
CoercibleTo(OutputForm)
Rng
Magma
SemiGroup
XAlgebra(R)
unitsKnown
AbelianGroup
AbelianSemiGroup
NonAssociativeSemiRing
Module(R)
RetractableTo(R)
NonAssociativeRng
Ring
SemiRng
AbelianMonoid
NonAssociativeSemiRng
BasicType
SemiRing