FreeNilpotentLie(n, class, R)

fnla.spad line 159 [edit on github]

Generate the Free Lie Algebra over a ring R with identity; A P. Hall basis is generated by a package call to HallBasis.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
^ : (%, PositiveInteger) -> %
from Magma
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
deepExpand : % -> OutputForm

deepExpand(x) rewrites all terms of x as commutators of generators.

dimension : () -> NonNegativeInteger

dimension() is the rank of this Lie algebra

generator : NonNegativeInteger -> %

generator(i) is the ith Hall Basis element

latex : % -> String
from SetCategory
leftPower : (%, PositiveInteger) -> %
from Magma
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(R)
rightPower : (%, PositiveInteger) -> %
from Magma
sample : () -> %
from AbelianMonoid
shallowExpand : % -> OutputForm

shallowExpand(x) replaces elements of basis by commutators of other basis elements if possible.

subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

BiModule(R, R)

CancellationAbelianMonoid

NonAssociativeAlgebra(R)

BasicType

Magma

RightModule(R)

Module(R)

AbelianGroup

AbelianSemiGroup

SetCategory

LeftModule(R)

AbelianMonoid

NonAssociativeRng

NonAssociativeSemiRng

CoercibleTo(OutputForm)