IndexedExponents(Varset)

multpoly.spad line 859 [edit on github]

IndexedExponents of an ordered set of variables gives a representation for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables

* : (Integer, %) -> % if NonNegativeInteger has AbelianGroup
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> % if NonNegativeInteger has AbelianGroup
from AbelianGroup
- : (%, %) -> % if NonNegativeInteger has AbelianGroup
from AbelianGroup
0 : () -> %
from AbelianMonoid
< : (%, %) -> Boolean
from PartialOrder
<= : (%, %) -> Boolean
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean
from PartialOrder
>= : (%, %) -> Boolean
from PartialOrder
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
construct : List(Record(k : Varset, c : NonNegativeInteger)) -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
constructOrdered : List(Record(k : Varset, c : NonNegativeInteger)) -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
inf : (%, %) -> %
from OrderedAbelianMonoidSup
latex : % -> String
from SetCategory
leadingCoefficient : % -> NonNegativeInteger
from IndexedProductCategory(NonNegativeInteger, Varset)
leadingMonomial : % -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
leadingSupport : % -> Varset
from IndexedProductCategory(NonNegativeInteger, Varset)
leadingTerm : % -> Record(k : Varset, c : NonNegativeInteger)
from IndexedProductCategory(NonNegativeInteger, Varset)
listOfTerms : % -> List(Record(k : Varset, c : NonNegativeInteger))
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
map : (Mapping(NonNegativeInteger, NonNegativeInteger), %) -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
max : (%, %) -> %
from OrderedSet
min : (%, %) -> %
from OrderedSet
monomial : (NonNegativeInteger, Varset) -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
monomial? : % -> Boolean
from IndexedProductCategory(NonNegativeInteger, Varset)
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(NonNegativeInteger, Varset)
opposite? : (%, %) -> Boolean
from AbelianMonoid
reductum : % -> %
from IndexedProductCategory(NonNegativeInteger, Varset)
sample : () -> %
from AbelianMonoid
smaller? : (%, %) -> Boolean
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
sup : (%, %) -> %
from OrderedAbelianMonoidSup
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

OrderedAbelianMonoidSup

OrderedCancellationAbelianMonoid

CancellationAbelianMonoid

OrderedAbelianSemiGroup

PartialOrder

BasicType

IndexedProductCategory(NonNegativeInteger, Varset)

AbelianProductCategory(NonNegativeInteger)

IndexedDirectProductCategory(NonNegativeInteger, Varset)

CoercibleTo(OutputForm)

AbelianGroup

AbelianSemiGroup

SetCategory

Comparable

OrderedSet

AbelianMonoid

OrderedAbelianMonoid