IndexedExponents(Varset)
multpoly.spad line 859
[edit on github]
IndexedExponents of an ordered set of variables gives a representation for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables
- * : (Integer, %) -> % if NonNegativeInteger has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if NonNegativeInteger has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if NonNegativeInteger has AbelianGroup
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- < : (%, %) -> Boolean
- from PartialOrder
- <= : (%, %) -> Boolean
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean
- from PartialOrder
- >= : (%, %) -> Boolean
- from PartialOrder
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- construct : List(Record(k : Varset, c : NonNegativeInteger)) -> %
- from IndexedProductCategory(NonNegativeInteger, Varset)
- constructOrdered : List(Record(k : Varset, c : NonNegativeInteger)) -> %
- from IndexedProductCategory(NonNegativeInteger, Varset)
- inf : (%, %) -> %
- from OrderedAbelianMonoidSup
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> NonNegativeInteger
- from IndexedProductCategory(NonNegativeInteger, Varset)
- leadingMonomial : % -> %
- from IndexedProductCategory(NonNegativeInteger, Varset)
- leadingSupport : % -> Varset
- from IndexedProductCategory(NonNegativeInteger, Varset)
- leadingTerm : % -> Record(k : Varset, c : NonNegativeInteger)
- from IndexedProductCategory(NonNegativeInteger, Varset)
- listOfTerms : % -> List(Record(k : Varset, c : NonNegativeInteger))
- from IndexedDirectProductCategory(NonNegativeInteger, Varset)
- map : (Mapping(NonNegativeInteger, NonNegativeInteger), %) -> %
- from IndexedProductCategory(NonNegativeInteger, Varset)
- max : (%, %) -> %
- from OrderedSet
- min : (%, %) -> %
- from OrderedSet
- monomial : (NonNegativeInteger, Varset) -> %
- from IndexedProductCategory(NonNegativeInteger, Varset)
- monomial? : % -> Boolean
- from IndexedProductCategory(NonNegativeInteger, Varset)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(NonNegativeInteger, Varset)
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- reductum : % -> %
- from IndexedProductCategory(NonNegativeInteger, Varset)
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- sup : (%, %) -> %
- from OrderedAbelianMonoidSup
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
OrderedAbelianMonoidSup
OrderedCancellationAbelianMonoid
CancellationAbelianMonoid
OrderedAbelianSemiGroup
PartialOrder
BasicType
IndexedProductCategory(NonNegativeInteger, Varset)
AbelianProductCategory(NonNegativeInteger)
IndexedDirectProductCategory(NonNegativeInteger, Varset)
CoercibleTo(OutputForm)
AbelianGroup
AbelianSemiGroup
SetCategory
Comparable
OrderedSet
AbelianMonoid
OrderedAbelianMonoid