Localize(M, R)
fraction.spad line 1
[edit on github]
Localize(M
, R
) produces fractions with numerators from an R
module M
and denominators being the nonzero elements of R
.
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> %
x / d
divides the element x
by d
.
- / : (M, R) -> %
m / d
divides the element m
by d
.
- 0 : () -> %
- from AbelianMonoid
- < : (%, %) -> Boolean if M has OrderedAbelianGroup
- from PartialOrder
- <= : (%, %) -> Boolean if M has OrderedAbelianGroup
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean if M has OrderedAbelianGroup
- from PartialOrder
- >= : (%, %) -> Boolean if M has OrderedAbelianGroup
- from PartialOrder
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- denom : % -> R
denom x
returns the denominator of x
.
- latex : % -> String
- from SetCategory
- max : (%, %) -> % if M has OrderedAbelianGroup
- from OrderedSet
- min : (%, %) -> % if M has OrderedAbelianGroup
- from OrderedSet
- numer : % -> M
numer x
returns the numerator of x
.
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if M has OrderedAbelianGroup
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
LeftModule(R)
BiModule(R, R)
PartialOrder
OrderedCancellationAbelianMonoid
CancellationAbelianMonoid
OrderedAbelianSemiGroup
CoercibleTo(OutputForm)
OrderedSet
Module(R)
AbelianGroup
AbelianSemiGroup
SetCategory
Comparable
AbelianMonoid
OrderedAbelianMonoid
BasicType
RightModule(R)
OrderedAbelianGroup