Localize(M, R)

fraction.spad line 1 [edit on github]

Localize(M, R) produces fractions with numerators from an R module M and denominators being the nonzero elements of R.

* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> %

x / d divides the element x by d.

/ : (M, R) -> %

m / d divides the element m by d.

0 : () -> %
from AbelianMonoid
< : (%, %) -> Boolean if M has OrderedAbelianGroup
from PartialOrder
<= : (%, %) -> Boolean if M has OrderedAbelianGroup
from PartialOrder
= : (%, %) -> Boolean
from BasicType
> : (%, %) -> Boolean if M has OrderedAbelianGroup
from PartialOrder
>= : (%, %) -> Boolean if M has OrderedAbelianGroup
from PartialOrder
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
denom : % -> R

denom x returns the denominator of x.

latex : % -> String
from SetCategory
max : (%, %) -> % if M has OrderedAbelianGroup
from OrderedSet
min : (%, %) -> % if M has OrderedAbelianGroup
from OrderedSet
numer : % -> M

numer x returns the numerator of x.

opposite? : (%, %) -> Boolean
from AbelianMonoid
sample : () -> %
from AbelianMonoid
smaller? : (%, %) -> Boolean if M has OrderedAbelianGroup
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

LeftModule(R)

BiModule(R, R)

PartialOrder

OrderedCancellationAbelianMonoid

CancellationAbelianMonoid

OrderedAbelianSemiGroup

CoercibleTo(OutputForm)

OrderedSet

Module(R)

AbelianGroup

AbelianSemiGroup

SetCategory

Comparable

AbelianMonoid

OrderedAbelianMonoid

BasicType

RightModule(R)

OrderedAbelianGroup