ModularRing(R, Mod, reduction, merge, exactQuo)
modring.spad line 1
[edit on github]
- R : CommutativeRing
- Mod : AbelianMonoid
- reduction : Mapping(R, R, Mod)
- merge : Mapping(Union(Mod, "failed"), Mod, Mod)
- exactQuo : Mapping(Union(R, "failed"), R, R, Mod)
These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See EuclideanModularRing , ModularField
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> R
coerce(x)
is undocumented
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- exQuo : (%, %) -> Union(%, "failed")
exQuo(x, y)
is undocumented
- inv : % -> %
inv(x)
is undocumented
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- modulus : % -> Mod
modulus(x)
is undocumented
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- recip : % -> Union(%, "failed")
recip(x)
is undocumented
- reduce : (R, Mod) -> %
reduce(r, m)
is undocumented
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
RightModule(%)
Rng
Monoid
Ring
SemiGroup
CancellationAbelianMonoid
LeftModule(%)
MagmaWithUnit
BasicType
unitsKnown
NonAssociativeRing
Magma
NonAssociativeSemiRng
SemiRing
AbelianGroup
NonAssociativeSemiRing
SetCategory
AbelianSemiGroup
AbelianMonoid
BiModule(%, %)
NonAssociativeRng
CoercibleTo(OutputForm)
SemiRng