ModularRing(R, Mod, reduction, merge, exactQuo)

modring.spad line 1 [edit on github]

These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See EuclideanModularRing , ModularField

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> R

coerce(x) is undocumented

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
exQuo : (%, %) -> Union(%, "failed")

exQuo(x, y) is undocumented

inv : % -> %

inv(x) is undocumented

latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
modulus : % -> Mod

modulus(x) is undocumented

one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
recip : % -> Union(%, "failed")

recip(x) is undocumented

reduce : (R, Mod) -> %

reduce(r, m) is undocumented

rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

RightModule(%)

Rng

Monoid

Ring

SemiGroup

CancellationAbelianMonoid

LeftModule(%)

MagmaWithUnit

BasicType

unitsKnown

NonAssociativeRing

Magma

NonAssociativeSemiRng

SemiRing

AbelianGroup

NonAssociativeSemiRing

SetCategory

AbelianSemiGroup

AbelianMonoid

BiModule(%, %)

NonAssociativeRng

CoercibleTo(OutputForm)

SemiRng