Numeric(S)

numeric.spad line 1 [edit on github]

Numeric provides real and complex numerical evaluation functions for various symbolic types.

complexNumeric : S -> Complex(Float)

complexNumeric(x) returns a complex approximation of x.

complexNumeric : (S, PositiveInteger) -> Complex(Float)

complexNumeric(x, n) returns a complex approximation of x up to n decimal places.

complexNumeric : Complex(S) -> Complex(Float) if S has CommutativeRing

complexNumeric(x) returns a complex approximation of x.

complexNumeric : (Complex(S), PositiveInteger) -> Complex(Float) if S has CommutativeRing

complexNumeric(x, n) returns a complex approximation of x up to n decimal places.

complexNumeric : Expression(S) -> Complex(Float) if S has OrderedSet and S has IntegralDomain

complexNumeric(x) returns a complex approximation of x.

complexNumeric : (Expression(S), PositiveInteger) -> Complex(Float) if S has OrderedSet and S has IntegralDomain

complexNumeric(x, n) returns a complex approximation of x up to n decimal places.

complexNumeric : Expression(Complex(S)) -> Complex(Float) if S has OrderedSet and S has IntegralDomain

complexNumeric(x) returns a complex approximation of x.

complexNumeric : (Expression(Complex(S)), PositiveInteger) -> Complex(Float) if S has OrderedSet and S has IntegralDomain

complexNumeric(x, n) returns a complex approximation of x up to n decimal places.

complexNumeric : Fraction(Polynomial(S)) -> Complex(Float) if S has IntegralDomain

complexNumeric(x) returns a complex approximation of x.

complexNumeric : (Fraction(Polynomial(S)), PositiveInteger) -> Complex(Float) if S has IntegralDomain

complexNumeric(x, n) returns a complex approximation of x

complexNumeric : Fraction(Polynomial(Complex(S))) -> Complex(Float) if S has IntegralDomain

complexNumeric(x) returns a complex approximation of x.

complexNumeric : (Fraction(Polynomial(Complex(S))), PositiveInteger) -> Complex(Float) if S has IntegralDomain

complexNumeric(x, n) returns a complex approximation of x up to n decimal places.

complexNumeric : Polynomial(S) -> Complex(Float) if S has Ring

complexNumeric(x) returns a complex approximation of x.

complexNumeric : (Polynomial(S), PositiveInteger) -> Complex(Float) if S has Ring

complexNumeric(x, n) returns a complex approximation of x up to n decimal places.

complexNumeric : Polynomial(Complex(S)) -> Complex(Float) if S has CommutativeRing

complexNumeric(x) returns a complex approximation of x.

complexNumeric : (Polynomial(Complex(S)), PositiveInteger) -> Complex(Float) if S has CommutativeRing

complexNumeric(x, n) returns a complex approximation of x up to n decimal places.

complexNumericIfCan : Expression(S) -> Union(Complex(Float), "failed") if S has OrderedSet and S has IntegralDomain

complexNumericIfCan(x) returns a complex approximation of x, or "failed" if x is not a constant.

complexNumericIfCan : (Expression(S), PositiveInteger) -> Union(Complex(Float), "failed") if S has OrderedSet and S has IntegralDomain

complexNumericIfCan(x, n) returns a complex approximation of x up to n decimal places, or "failed" if x is not a constant.

complexNumericIfCan : Expression(Complex(S)) -> Union(Complex(Float), "failed") if S has OrderedSet and S has IntegralDomain

complexNumericIfCan(x) returns a complex approximation of x, or "failed" if x is not a constant.

complexNumericIfCan : (Expression(Complex(S)), PositiveInteger) -> Union(Complex(Float), "failed") if S has OrderedSet and S has IntegralDomain

complexNumericIfCan(x, n) returns a complex approximation of x up to n decimal places, or "failed" if x is not a constant.

complexNumericIfCan : Fraction(Polynomial(S)) -> Union(Complex(Float), "failed") if S has IntegralDomain

complexNumericIfCan(x) returns a complex approximation of x, or "failed" if x is not a constant.

complexNumericIfCan : (Fraction(Polynomial(S)), PositiveInteger) -> Union(Complex(Float), "failed") if S has IntegralDomain

complexNumericIfCan(x, n) returns a complex approximation of x, or "failed" if x is not a constant.

complexNumericIfCan : Fraction(Polynomial(Complex(S))) -> Union(Complex(Float), "failed") if S has IntegralDomain

complexNumericIfCan(x) returns a complex approximation of x, or "failed" if x is not a constant.

complexNumericIfCan : (Fraction(Polynomial(Complex(S))), PositiveInteger) -> Union(Complex(Float), "failed") if S has IntegralDomain

complexNumericIfCan(x, n) returns a complex approximation of x up to n decimal places, or "failed" if x is not a constant.

complexNumericIfCan : Polynomial(S) -> Union(Complex(Float), "failed") if S has Ring

complexNumericIfCan(x) returns a complex approximation of x, or "failed" if x is not a constant.

complexNumericIfCan : (Polynomial(S), PositiveInteger) -> Union(Complex(Float), "failed") if S has Ring

complexNumericIfCan(x, n) returns a complex approximation of x up to n decimal places, or "failed" if x is not a constant.

complexNumericIfCan : Polynomial(Complex(S)) -> Union(Complex(Float), "failed") if S has CommutativeRing

complexNumericIfCan(x) returns a complex approximation of x, or "failed" if x is not constant.

complexNumericIfCan : (Polynomial(Complex(S)), PositiveInteger) -> Union(Complex(Float), "failed") if S has CommutativeRing

complexNumericIfCan(x, n) returns a complex approximation of x up to n decimal places, or "failed" if x is not a constant.

numeric : S -> Float

numeric(x) returns a real approximation of x.

numeric : (S, PositiveInteger) -> Float

numeric(x, n) returns a real approximation of x up to n decimal places.

numeric : Expression(S) -> Float if S has OrderedSet and S has IntegralDomain

numeric(x) returns a real approximation of x.

numeric : (Expression(S), PositiveInteger) -> Float if S has OrderedSet and S has IntegralDomain

numeric(x, n) returns a real approximation of x up to n decimal places.

numeric : Fraction(Polynomial(S)) -> Float if S has IntegralDomain

numeric(x) returns a real approximation of x.

numeric : (Fraction(Polynomial(S)), PositiveInteger) -> Float if S has IntegralDomain

numeric(x, n) returns a real approximation of x up to n decimal places.

numeric : Polynomial(S) -> Float if S has Ring

numeric(x) returns a real approximation of x.

numeric : (Polynomial(S), PositiveInteger) -> Float if S has Ring

numeric(x, n) returns a real approximation of x up to n decimal places.

numericIfCan : Expression(S) -> Union(Float, "failed") if S has OrderedSet and S has IntegralDomain

numericIfCan(x) returns a real approximation of x, or "failed" if x is not a constant.

numericIfCan : (Expression(S), PositiveInteger) -> Union(Float, "failed") if S has OrderedSet and S has IntegralDomain

numericIfCan(x, n) returns a real approximation of x up to n decimal places, or "failed" if x is not a constant.

numericIfCan : Fraction(Polynomial(S)) -> Union(Float, "failed") if S has IntegralDomain

numericIfCan(x) returns a real approximation of x, or "failed" if x is not a constant.

numericIfCan : (Fraction(Polynomial(S)), PositiveInteger) -> Union(Float, "failed") if S has IntegralDomain

numericIfCan(x, n) returns a real approximation of x up to n decimal places, or "failed" if x is not a constant.

numericIfCan : Polynomial(S) -> Union(Float, "failed") if S has Ring

numericIfCan(x) returns a real approximation of x, or "failed" if x is not a constant.

numericIfCan : (Polynomial(S), PositiveInteger) -> Union(Float, "failed") if S has Ring

numericIfCan(x, n) returns a real approximation of x up to n decimal places, or "failed" if x is not a constant.