Expression(R)
expr.spad line 1
[edit on github]
Expressions involving symbolic functions.
- * : (%, %) -> % if R has SemiGroup
- from Magma
- * : (%, R) -> % if R has Ring
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has IntegralDomain
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has IntegralDomain and R has LinearlyExplicitOver(Integer) or R has LinearlyExplicitOver(Integer) and R has Ring
- from RightModule(Integer)
- * : (R, %) -> % if R has CommutativeRing
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has IntegralDomain
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> % if R has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> % if R has AbelianSemiGroup
- from AbelianMonoid
- * : (PositiveInteger, %) -> % if R has AbelianSemiGroup
- from AbelianSemiGroup
- + : (%, %) -> % if R has AbelianSemiGroup
- from AbelianSemiGroup
- - : % -> % if R has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if R has AbelianGroup
- from AbelianGroup
- / : (%, %) -> % if R has Group or R has IntegralDomain
- from Group
- / : (SparseMultivariatePolynomial(R, Kernel(%)), SparseMultivariatePolynomial(R, Kernel(%))) -> % if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- 0 : () -> % if R has AbelianSemiGroup
- from AbelianMonoid
- 1 : () -> % if R has SemiGroup
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- Beta : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- Beta : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- Chi : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- Ci : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- D : (%, List(Symbol)) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- Ei : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- Gamma : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- Gamma : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- Shi : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- Si : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- ^ : (%, %) -> % if R has IntegralDomain
- from ElementaryFunctionCategory
- ^ : (%, Fraction(Integer)) -> % if R has IntegralDomain
- from RadicalCategory
- ^ : (%, Integer) -> % if R has Group or R has IntegralDomain
- from Group
- ^ : (%, NonNegativeInteger) -> % if R has SemiGroup
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> % if R has SemiGroup
- from Magma
- abs : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- acos : % -> % if R has IntegralDomain
- from ArcTrigonometricFunctionCategory
- acosh : % -> % if R has IntegralDomain
- from ArcHyperbolicFunctionCategory
- acot : % -> % if R has IntegralDomain
- from ArcTrigonometricFunctionCategory
- acoth : % -> % if R has IntegralDomain
- from ArcHyperbolicFunctionCategory
- acsc : % -> % if R has IntegralDomain
- from ArcTrigonometricFunctionCategory
- acsch : % -> % if R has IntegralDomain
- from ArcHyperbolicFunctionCategory
- airyAi : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- airyAiPrime : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- airyBi : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- airyBiPrime : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- algtower : % -> List(Kernel(%)) if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- algtower : List(%) -> List(Kernel(%)) if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- angerJ : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> % if R has Ring
- from NonAssociativeSemiRng
- applyQuote : (Symbol, %) -> %
- from FunctionSpace2(R, Kernel(%))
- applyQuote : (Symbol, %, %) -> %
- from FunctionSpace2(R, Kernel(%))
- applyQuote : (Symbol, %, %, %) -> %
- from FunctionSpace2(R, Kernel(%))
- applyQuote : (Symbol, %, %, %, %) -> %
- from FunctionSpace2(R, Kernel(%))
- applyQuote : (Symbol, List(%)) -> %
- from FunctionSpace2(R, Kernel(%))
- asec : % -> % if R has IntegralDomain
- from ArcTrigonometricFunctionCategory
- asech : % -> % if R has IntegralDomain
- from ArcHyperbolicFunctionCategory
- asin : % -> % if R has IntegralDomain
- from ArcTrigonometricFunctionCategory
- asinh : % -> % if R has IntegralDomain
- from ArcHyperbolicFunctionCategory
- associates? : (%, %) -> Boolean if R has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- atan : % -> % if R has IntegralDomain
- from ArcTrigonometricFunctionCategory
- atanh : % -> % if R has IntegralDomain
- from ArcHyperbolicFunctionCategory
- belong? : BasicOperator -> Boolean
- from ExpressionSpace2(Kernel(%))
- besselI : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- besselJ : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- besselK : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- besselY : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- binomial : (%, %) -> % if R has IntegralDomain
- from CombinatorialFunctionCategory
- box : % -> %
- from ExpressionSpace2(Kernel(%))
- ceiling : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- charlierC : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- charthRoot : % -> Union(%, "failed") if % has CharacteristicNonZero and R has IntegralDomain and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : % -> % if R has IntegralDomain
- from Algebra(%)
- coerce : R -> %
- from CoercibleFrom(R)
- coerce : AlgebraicNumber -> % if R has RetractableTo(Integer) and R has IntegralDomain
- from CoercibleFrom(AlgebraicNumber)
- coerce : Fraction(R) -> % if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- coerce : Fraction(Integer) -> % if R has RetractableTo(Fraction(Integer)) or R has IntegralDomain
- from CoercibleFrom(Fraction(Integer))
- coerce : Fraction(Polynomial(R)) -> % if R has IntegralDomain
- from CoercibleFrom(Fraction(Polynomial(R)))
- coerce : Fraction(Polynomial(Fraction(R))) -> % if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- coerce : Integer -> % if R has RetractableTo(Integer) or R has Ring
- from CoercibleFrom(Integer)
- coerce : Kernel(%) -> %
- from CoercibleFrom(Kernel(%))
- coerce : Polynomial(R) -> % if R has Ring
- from CoercibleFrom(Polynomial(R))
- coerce : Polynomial(Fraction(R)) -> % if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- coerce : SparseMultivariatePolynomial(R, Kernel(%)) -> % if R has Ring
- from FunctionSpace2(R, Kernel(%))
- coerce : Symbol -> %
- from CoercibleFrom(Symbol)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> % if R has Group or R has Ring
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has IntegralDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- conjugate : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- conjugate : (%, %) -> % if R has Group
- from Group
- convert : Factored(%) -> % if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- convert : % -> InputForm if R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- cos : % -> % if R has IntegralDomain
- from TrigonometricFunctionCategory
- cosh : % -> % if R has IntegralDomain
- from HyperbolicFunctionCategory
- cot : % -> % if R has IntegralDomain
- from TrigonometricFunctionCategory
- coth : % -> % if R has IntegralDomain
- from HyperbolicFunctionCategory
- csc : % -> % if R has IntegralDomain
- from TrigonometricFunctionCategory
- csch : % -> % if R has IntegralDomain
- from HyperbolicFunctionCategory
- definingPolynomial : % -> % if % has Ring
- from ExpressionSpace2(Kernel(%))
- denom : % -> SparseMultivariatePolynomial(R, Kernel(%)) if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- denominator : % -> % if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- differentiate : (%, List(Symbol)) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- digamma : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- dilog : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- diracDelta : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- distribute : % -> %
- from ExpressionSpace2(Kernel(%))
- distribute : (%, %) -> %
- from ExpressionSpace2(Kernel(%))
- divide : (%, %) -> Record(quotient : %, remainder : %) if R has IntegralDomain
- from EuclideanDomain
- ellipticE : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- ellipticE : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- ellipticF : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- ellipticK : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- ellipticPi : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- elt : (BasicOperator, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- erf : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- erfi : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- euclideanSize : % -> NonNegativeInteger if R has IntegralDomain
- from EuclideanDomain
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, BasicOperator, %, Symbol) -> % if R has ConvertibleTo(InputForm)
- from FunctionSpace2(R, Kernel(%))
- eval : (%, BasicOperator, Mapping(%, %)) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, BasicOperator, Mapping(%, List(%))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, Kernel(%), %) -> %
- from InnerEvalable(Kernel(%), %)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(BasicOperator), List(%), Symbol) -> % if R has ConvertibleTo(InputForm)
- from FunctionSpace2(R, Kernel(%))
- eval : (%, List(BasicOperator), List(Mapping(%, %))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(BasicOperator), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- eval : (%, List(Kernel(%)), List(%)) -> %
- from InnerEvalable(Kernel(%), %)
- eval : (%, List(Symbol), List(Mapping(%, %))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Symbol), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, %))) -> % if R has Ring
- from FunctionSpace2(R, Kernel(%))
- eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, List(%)))) -> % if R has Ring
- from FunctionSpace2(R, Kernel(%))
- eval : (%, Symbol, Mapping(%, %)) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Symbol, Mapping(%, List(%))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Symbol, NonNegativeInteger, Mapping(%, %)) -> % if R has Ring
- from FunctionSpace2(R, Kernel(%))
- eval : (%, Symbol, NonNegativeInteger, Mapping(%, List(%))) -> % if R has Ring
- from FunctionSpace2(R, Kernel(%))
- even? : % -> Boolean if % has RetractableTo(Integer)
- from ExpressionSpace2(Kernel(%))
- exp : % -> % if R has IntegralDomain
- from ElementaryFunctionCategory
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has IntegralDomain
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if R has IntegralDomain
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has IntegralDomain
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has IntegralDomain
- from EuclideanDomain
- factor : % -> Factored(%) if R has IntegralDomain
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has IntegralDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has IntegralDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorial : % -> % if R has IntegralDomain
- from CombinatorialFunctionCategory
- factorials : % -> % if R has IntegralDomain
- from CombinatorialOpsCategory
- factorials : (%, Symbol) -> % if R has IntegralDomain
- from CombinatorialOpsCategory
- floor : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- fractionPart : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- freeOf? : (%, %) -> Boolean
- from ExpressionSpace2(Kernel(%))
- freeOf? : (%, Symbol) -> Boolean
- from ExpressionSpace2(Kernel(%))
- fresnelC : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- fresnelS : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- gcd : (%, %) -> % if R has IntegralDomain
- from GcdDomain
- gcd : List(%) -> % if R has IntegralDomain
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has IntegralDomain
- from GcdDomain
- getSimplifyDenomsFlag : () -> Boolean if R has IntegralDomain
getSimplifyDenomsFlag()
gets values of flag affecting simplification of denominators. See setSimplifyDenomsFlag.
- ground : % -> R
- from FunctionSpace2(R, Kernel(%))
- ground? : % -> Boolean
- from FunctionSpace2(R, Kernel(%))
- hahnQ : (%, %, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- hahnR : (%, %, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- hahnS : (%, %, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- hahn_p : (%, %, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- hankelH1 : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- hankelH2 : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- height : % -> NonNegativeInteger
- from ExpressionSpace2(Kernel(%))
- hermiteH : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- hypergeometricF : (List(%), List(%), %) -> % if R has IntegralDomain and % has RetractableTo(Integer)
- from SpecialFunctionCategory
- integral : (%, SegmentBinding(%)) -> % if R has IntegralDomain
- from PrimitiveFunctionCategory
- integral : (%, Symbol) -> % if R has IntegralDomain
- from PrimitiveFunctionCategory
- inv : % -> % if R has Group or R has IntegralDomain
- from Group
- is? : (%, BasicOperator) -> Boolean
- from ExpressionSpace2(Kernel(%))
- is? : (%, Symbol) -> Boolean
- from ExpressionSpace2(Kernel(%))
- isExpt : % -> Union(Record(var : Kernel(%), exponent : Integer), "failed") if R has SemiGroup
- from FunctionSpace2(R, Kernel(%))
- isExpt : (%, BasicOperator) -> Union(Record(var : Kernel(%), exponent : Integer), "failed") if R has Ring
- from FunctionSpace2(R, Kernel(%))
- isExpt : (%, Symbol) -> Union(Record(var : Kernel(%), exponent : Integer), "failed") if R has Ring
- from FunctionSpace2(R, Kernel(%))
- isMult : % -> Union(Record(coef : Integer, var : Kernel(%)), "failed") if R has AbelianSemiGroup
- from FunctionSpace2(R, Kernel(%))
- isPlus : % -> Union(List(%), "failed") if R has AbelianSemiGroup
- from FunctionSpace2(R, Kernel(%))
- isPower : % -> Union(Record(val : %, exponent : Integer), "failed") if R has Ring
- from FunctionSpace2(R, Kernel(%))
- isTimes : % -> Union(List(%), "failed") if R has SemiGroup
- from FunctionSpace2(R, Kernel(%))
- jacobiCn : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- jacobiDn : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- jacobiP : (%, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- jacobiSn : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- jacobiTheta : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- jacobiZeta : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- kelvinBei : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- kelvinBer : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- kelvinKei : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- kelvinKer : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- kernel : (BasicOperator, %) -> %
- from ExpressionSpace2(Kernel(%))
- kernel : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- kernels : % -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- kernels : List(%) -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- krawtchoukK : (%, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- kummerM : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- kummerU : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- laguerreL : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- lambertW : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has IntegralDomain
- from GcdDomain
- lcm : List(%) -> % if R has IntegralDomain
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has IntegralDomain
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> % if R has SemiGroup
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> % if R has SemiGroup
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiGroup
- from MagmaWithUnit
- legendreP : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- legendreQ : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- lerchPhi : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- li : % -> % if R has IntegralDomain
- from LiouvillianFunctionCategory
- log : % -> % if R has IntegralDomain
- from ElementaryFunctionCategory
- lommelS1 : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- lommelS2 : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- mainKernel : % -> Union(Kernel(%), "failed")
- from ExpressionSpace2(Kernel(%))
- map : (Mapping(%, %), Kernel(%)) -> %
- from ExpressionSpace2(Kernel(%))
- meijerG : (List(%), List(%), List(%), List(%), %) -> % if R has IntegralDomain and % has RetractableTo(Integer)
- from SpecialFunctionCategory
- meixnerM : (%, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- meixnerP : (%, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- minPoly : Kernel(%) -> SparseUnivariatePolynomial(%) if % has Ring
- from ExpressionSpace2(Kernel(%))
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has IntegralDomain
- from EuclideanDomain
- nthRoot : (%, Integer) -> % if R has IntegralDomain
- from RadicalCategory
- number? : % -> Boolean if R has IntegralDomain
number?(f)
tests if f
is rational
- numer : % -> SparseMultivariatePolynomial(R, Kernel(%)) if R has Ring
- from FunctionSpace2(R, Kernel(%))
- numerator : % -> % if R has Ring
- from FunctionSpace2(R, Kernel(%))
- odd? : % -> Boolean if % has RetractableTo(Integer)
- from ExpressionSpace2(Kernel(%))
- one? : % -> Boolean if R has SemiGroup
- from MagmaWithUnit
- operator : BasicOperator -> BasicOperator
- from ExpressionSpace2(Kernel(%))
- operators : % -> List(BasicOperator)
- from ExpressionSpace2(Kernel(%))
- opposite? : (%, %) -> Boolean if R has AbelianSemiGroup
- from AbelianMonoid
- paren : % -> %
- from ExpressionSpace2(Kernel(%))
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- permutation : (%, %) -> % if R has IntegralDomain
- from CombinatorialFunctionCategory
- pi : () -> % if R has IntegralDomain
- from TranscendentalFunctionCategory
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- polygamma : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- polylog : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- prime? : % -> Boolean if R has IntegralDomain
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has IntegralDomain
- from PrincipalIdealDomain
- product : (%, SegmentBinding(%)) -> % if R has IntegralDomain
- from CombinatorialOpsCategory
- product : (%, Symbol) -> % if R has IntegralDomain
- from CombinatorialOpsCategory
- quo : (%, %) -> % if R has IntegralDomain
- from EuclideanDomain
- racahR : (%, %, %, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- recip : % -> Union(%, "failed") if R has SemiGroup
- from MagmaWithUnit
- reduce : % -> % if R has IntegralDomain
reduce(f)
simplifies all the unreduced algebraic quantities present in f
by applying their defining relations.
- reducedSystem : Matrix(%) -> Matrix(R) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has IntegralDomain and R has LinearlyExplicitOver(Integer) or R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R)) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has IntegralDomain and R has LinearlyExplicitOver(Integer) or R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- rem : (%, %) -> % if R has IntegralDomain
- from EuclideanDomain
- retract : % -> R
- from RetractableTo(R)
- retract : % -> AlgebraicNumber if R has RetractableTo(Integer) and R has IntegralDomain
- from RetractableTo(AlgebraicNumber)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer)) or R has RetractableTo(Integer) and R has IntegralDomain
- from RetractableTo(Fraction(Integer))
- retract : % -> Fraction(Polynomial(R)) if R has IntegralDomain
- from RetractableTo(Fraction(Polynomial(R)))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retract : % -> Kernel(%)
- from RetractableTo(Kernel(%))
- retract : % -> Polynomial(R) if R has Ring
- from RetractableTo(Polynomial(R))
- retract : % -> Symbol
- from RetractableTo(Symbol)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(AlgebraicNumber, "failed") if R has RetractableTo(Integer) and R has IntegralDomain
- from RetractableTo(AlgebraicNumber)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer)) or R has RetractableTo(Integer) and R has IntegralDomain
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Fraction(Polynomial(R)), "failed") if R has IntegralDomain
- from RetractableTo(Fraction(Polynomial(R)))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Kernel(%), "failed")
- from RetractableTo(Kernel(%))
- retractIfCan : % -> Union(Polynomial(R), "failed") if R has Ring
- from RetractableTo(Polynomial(R))
- retractIfCan : % -> Union(Symbol, "failed")
- from RetractableTo(Symbol)
- riemannZeta : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- rightPower : (%, NonNegativeInteger) -> % if R has SemiGroup
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> % if R has SemiGroup
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiGroup
- from MagmaWithUnit
- rootOf : % -> % if R has IntegralDomain
- from AlgebraicallyClosedFunctionSpace(R)
- rootOf : (%, Symbol) -> % if R has IntegralDomain
- from AlgebraicallyClosedFunctionSpace(R)
- rootOf : Polynomial(%) -> % if R has IntegralDomain
- from AlgebraicallyClosedField
- rootOf : SparseUnivariatePolynomial(%) -> % if R has IntegralDomain
- from AlgebraicallyClosedField
- rootOf : (SparseUnivariatePolynomial(%), Symbol) -> % if R has IntegralDomain
- from AlgebraicallyClosedField
- rootSum : (%, SparseUnivariatePolynomial(%), Symbol) -> % if R has IntegralDomain
- from AlgebraicallyClosedFunctionSpace(R)
- rootsOf : % -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedFunctionSpace(R)
- rootsOf : (%, Symbol) -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedFunctionSpace(R)
- rootsOf : Polynomial(%) -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedField
- rootsOf : SparseUnivariatePolynomial(%) -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedField
- rootsOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedField
- sample : () -> % if R has AbelianSemiGroup or R has SemiGroup
- from AbelianMonoid
- sec : % -> % if R has IntegralDomain
- from TrigonometricFunctionCategory
- sech : % -> % if R has IntegralDomain
- from HyperbolicFunctionCategory
- setSimplifyDenomsFlag : Boolean -> Boolean if R has IntegralDomain
setSimplifyDenomsFlag(x)
sets flag affecting simplification of denominators. If true
irrational algebraics are removed from denominators. If false
they are kept.
- sign : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- sin : % -> % if R has IntegralDomain
- from TrigonometricFunctionCategory
- sinh : % -> % if R has IntegralDomain
- from HyperbolicFunctionCategory
- sizeLess? : (%, %) -> Boolean if R has IntegralDomain
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has IntegralDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- sqrt : % -> % if R has IntegralDomain
- from RadicalCategory
- squareFree : % -> Factored(%) if R has IntegralDomain
- from UniqueFactorizationDomain
- squareFreePart : % -> % if R has IntegralDomain
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has IntegralDomain and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- struveH : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- struveL : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- subst : (%, Equation(%)) -> %
- from ExpressionSpace2(Kernel(%))
- subst : (%, List(Equation(%))) -> %
- from ExpressionSpace2(Kernel(%))
- subst : (%, List(Kernel(%)), List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- subtractIfCan : (%, %) -> Union(%, "failed") if R has AbelianGroup
- from CancellationAbelianMonoid
- summation : (%, SegmentBinding(%)) -> % if R has IntegralDomain
- from CombinatorialOpsCategory
- summation : (%, Symbol) -> % if R has IntegralDomain
- from CombinatorialOpsCategory
- tan : % -> % if R has IntegralDomain
- from TrigonometricFunctionCategory
- tanh : % -> % if R has IntegralDomain
- from HyperbolicFunctionCategory
- tower : % -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- tower : List(%) -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- unit? : % -> Boolean if R has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if R has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has IntegralDomain
- from EntireRing
- unitStep : % -> % if R has IntegralDomain
- from SpecialFunctionCategory
- univariate : (%, Kernel(%)) -> Fraction(SparseUnivariatePolynomial(%)) if R has IntegralDomain
- from FunctionSpace2(R, Kernel(%))
- variables : % -> List(Symbol)
- from FunctionSpace2(R, Kernel(%))
- variables : List(%) -> List(Symbol)
- from FunctionSpace2(R, Kernel(%))
- weberE : (%, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- weierstrassP : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- weierstrassPInverse : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- weierstrassPPrime : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- weierstrassSigma : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- weierstrassZeta : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- whittakerM : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- whittakerW : (%, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- wilsonW : (%, %, %, %, %, %) -> % if R has IntegralDomain
- from SpecialFunctionCategory
- zero? : % -> Boolean if R has AbelianSemiGroup
- from AbelianMonoid
- zeroOf : % -> % if R has IntegralDomain
- from AlgebraicallyClosedFunctionSpace(R)
- zeroOf : (%, Symbol) -> % if R has IntegralDomain
- from AlgebraicallyClosedFunctionSpace(R)
- zeroOf : Polynomial(%) -> % if R has IntegralDomain
- from AlgebraicallyClosedField
- zeroOf : SparseUnivariatePolynomial(%) -> % if R has IntegralDomain
- from AlgebraicallyClosedField
- zeroOf : (SparseUnivariatePolynomial(%), Symbol) -> % if R has IntegralDomain
- from AlgebraicallyClosedField
- zerosOf : % -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedFunctionSpace(R)
- zerosOf : (%, Symbol) -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedFunctionSpace(R)
- zerosOf : Polynomial(%) -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedField
- zerosOf : SparseUnivariatePolynomial(%) -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedField
- zerosOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%) if R has IntegralDomain
- from AlgebraicallyClosedField
- ~= : (%, %) -> Boolean
- from BasicType
EntireRing
Ring
CoercibleFrom(AlgebraicNumber)
Algebra(%)
CoercibleFrom(Kernel(%))
Patternable(R)
CancellationAbelianMonoid
CommutativeStar
DivisionRing
ConvertibleTo(Pattern(Float))
Field
LinearlyExplicitOver(Integer)
FullyPatternMatchable(R)
SemiGroup
RetractableTo(Kernel(%))
AlgebraicallyClosedFunctionSpace(R)
LeftModule(%)
RightModule(R)
Monoid
InnerEvalable(Kernel(%), %)
CombinatorialFunctionCategory
BiModule(Fraction(Integer), Fraction(Integer))
SpecialFunctionCategory
RetractableTo(Polynomial(R))
Algebra(R)
TrigonometricFunctionCategory
Module(%)
LeftOreRing
CoercibleFrom(Fraction(Integer))
noZeroDivisors
ExpressionSpace2(Kernel(%))
FullyRetractableTo(R)
SemiRing
NonAssociativeAlgebra(%)
SetCategory
CharacteristicNonZero
NonAssociativeSemiRing
RetractableTo(AlgebraicNumber)
PolynomialFactorizationExplicit
TwoSidedRecip
EuclideanDomain
CoercibleFrom(Fraction(Polynomial(R)))
CombinatorialOpsCategory
NonAssociativeRing
CoercibleFrom(Symbol)
FunctionSpace(R)
NonAssociativeRng
CoercibleFrom(Polynomial(R))
BiModule(R, R)
RetractableTo(R)
PrincipalIdealDomain
canonicalsClosed
NonAssociativeAlgebra(R)
ArcTrigonometricFunctionCategory
CommutativeRing
ArcHyperbolicFunctionCategory
FunctionSpace2(R, Kernel(%))
unitsKnown
AbelianSemiGroup
LeftModule(R)
Rng
canonicalUnitNormal
LeftModule(Fraction(Integer))
IntegralDomain
ExpressionSpace
RightModule(Integer)
CoercibleFrom(R)
Evalable(%)
NonAssociativeAlgebra(Fraction(Integer))
FullyLinearlyExplicitOver(R)
AlgebraicallyClosedField
LinearlyExplicitOver(R)
RadicalCategory
Group
NonAssociativeSemiRng
GcdDomain
CharacteristicZero
PatternMatchable(Float)
PartialDifferentialRing(Symbol)
Algebra(Fraction(Integer))
HyperbolicFunctionCategory
AbelianGroup
LiouvillianFunctionCategory
BasicType
RetractableTo(Fraction(Polynomial(R)))
MagmaWithUnit
PrimitiveFunctionCategory
Comparable
CoercibleFrom(Integer)
AbelianMonoid
PatternMatchable(Integer)
CoercibleTo(OutputForm)
BiModule(%, %)
RetractableTo(Fraction(Integer))
SemiRng
ConvertibleTo(InputForm)
RetractableTo(Symbol)
RightModule(Fraction(Integer))
Module(R)
InnerEvalable(%, %)
UniqueFactorizationDomain
ElementaryFunctionCategory
TranscendentalFunctionCategory
ConvertibleTo(Pattern(Integer))
Module(Fraction(Integer))
RightModule(%)
RetractableTo(Integer)
Magma