AlgebraicallyClosedField
algfunc.spad line 1
[edit on github]
Model for algebraically closed fields.
- * : (%, %) -> %
- from Magma
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, Fraction(Integer)) -> %
- from RadicalCategory
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Fraction(Integer) -> %
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- nthRoot : (%, Integer) -> %
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rootOf : Polynomial(%) -> %
rootOf(p) returns y such that p(y) = 0. Error: if p has more than one variable y.
- rootOf : SparseUnivariatePolynomial(%) -> %
rootOf(p) returns y such that p(y) = 0.
- rootOf : (SparseUnivariatePolynomial(%), Symbol) -> %
rootOf(p, y) returns y such that p(y) = 0. The object returned displays as 'y.
- rootsOf : Polynomial(%) -> List(%)
rootsOf(p) returns [y1, ..., yn] such that p(yi) = 0. Note: the returned values y1, ..., yn contain new symbols which are bound in the interpreter to the respective values. Error: if p has more than one variable y.
- rootsOf : SparseUnivariatePolynomial(%) -> List(%)
rootsOf(p) returns [y1, ..., yn] such that p(yi) = 0. Note: the returned values y1, ..., yn contain new symbols which are bound in the interpreter to the respective values.
- rootsOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
rootsOf(p, z) returns [y1, ..., yn] such that p(yi) = 0; The returned roots contain new symbols '%z0, '%z1 ...; Note: the new symbols are bound in the interpreter to the respective values.
- sample : () -> %
- from AbelianMonoid
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- sqrt : % -> %
- from RadicalCategory
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- zeroOf : Polynomial(%) -> %
zeroOf(p) returns y such that p(y) = 0. If possible, y is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if p has more than one variable y.
- zeroOf : SparseUnivariatePolynomial(%) -> %
zeroOf(p) returns y such that p(y) = 0; if possible, y is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.
- zeroOf : (SparseUnivariatePolynomial(%), Symbol) -> %
zeroOf(p, y) returns y such that p(y) = 0; if possible, y is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as 'y.
- zerosOf : Polynomial(%) -> List(%)
zerosOf(p) returns [y1, ..., yn] such that p(yi) = 0. The yi's are expressed in radicals if possible. Otherwise they are implicit algebraic quantities containing new symbols. The new symbols are bound in the interpreter to the respective values. Error: if p has more than one variable y.
- zerosOf : SparseUnivariatePolynomial(%) -> List(%)
zerosOf(p) returns [y1, ..., yn] such that p(yi) = 0. The yi's are expressed in radicals if possible. Otherwise they are implicit algebraic quantities containing new symbols. The new symbols are bound in the interpreter to the respective values.
- zerosOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
zerosOf(p, y) returns [y1, ..., yn] such that p(yi) = 0. The yi's are expressed in radicals if possible, and otherwise as implicit algebraic quantities containing new symbols which display as '%z0, '%z1, ...; The new symbols are bound in the interpreter to respective values.
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
Module(Fraction(Integer))
noZeroDivisors
LeftModule(Fraction(Integer))
canonicalsClosed
Algebra(%)
Monoid
GcdDomain
AbelianMonoid
EuclideanDomain
EntireRing
NonAssociativeSemiRng
NonAssociativeAlgebra(Fraction(Integer))
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
RightModule(Fraction(Integer))
unitsKnown
TwoSidedRecip
LeftModule(%)
canonicalUnitNormal
RadicalCategory
Module(%)
Magma
SetCategory
LeftOreRing
CoercibleTo(OutputForm)
Algebra(Fraction(Integer))
Rng
Field
CommutativeRing
UniqueFactorizationDomain
SemiGroup
DivisionRing
BiModule(%, %)
AbelianGroup
AbelianSemiGroup
CommutativeStar
NonAssociativeSemiRing
RightModule(%)
NonAssociativeAlgebra(%)
PrincipalIdealDomain
BiModule(Fraction(Integer), Fraction(Integer))
NonAssociativeRng
Ring
SemiRng
BasicType
SemiRing