AlgebraicallyClosedField
algfunc.spad line 1
[edit on github]
Model for algebraically closed fields.
- * : (%, %) -> %
- from Magma
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, Fraction(Integer)) -> %
- from RadicalCategory
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Fraction(Integer) -> %
- from Algebra(Fraction(Integer))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- inv : % -> %
- from DivisionRing
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- nthRoot : (%, Integer) -> %
- from RadicalCategory
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rem : (%, %) -> %
- from EuclideanDomain
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rootOf : Polynomial(%) -> %
rootOf(p)
returns y
such that p(y) = 0
. Error: if p
has more than one variable y
.
- rootOf : SparseUnivariatePolynomial(%) -> %
rootOf(p)
returns y
such that p(y) = 0
.
- rootOf : (SparseUnivariatePolynomial(%), Symbol) -> %
rootOf(p, y)
returns y
such that p(y) = 0
. The object returned displays as 'y
.
- rootsOf : Polynomial(%) -> List(%)
rootsOf(p)
returns [y1, ..., yn]
such that p(yi
) = 0
. Note: the returned values y1
, ..., yn
contain new symbols which are bound in the interpreter to the respective values. Error: if p
has more than one variable y
.
- rootsOf : SparseUnivariatePolynomial(%) -> List(%)
rootsOf(p)
returns [y1, ..., yn]
such that p(yi
) = 0
. Note: the returned values y1
, ..., yn
contain new symbols which are bound in the interpreter to the respective values.
- rootsOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
rootsOf(p, z)
returns [y1, ..., yn]
such that p(yi
) = 0
; The returned roots contain new symbols '%z0
, '%z1
...; Note: the new symbols are bound in the interpreter to the respective values.
- sample : () -> %
- from AbelianMonoid
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- sqrt : % -> %
- from RadicalCategory
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- zeroOf : Polynomial(%) -> %
zeroOf(p)
returns y
such that p(y) = 0
. If possible, y
is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if p
has more than one variable y
.
- zeroOf : SparseUnivariatePolynomial(%) -> %
zeroOf(p)
returns y
such that p(y) = 0
; if possible, y
is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.
- zeroOf : (SparseUnivariatePolynomial(%), Symbol) -> %
zeroOf(p, y)
returns y
such that p(y) = 0
; if possible, y
is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as 'y
.
- zerosOf : Polynomial(%) -> List(%)
zerosOf(p)
returns [y1, ..., yn]
such that p(yi
) = 0
. The yi
's
are expressed in radicals if possible. Otherwise they are implicit algebraic quantities containing new symbols. The new symbols are bound in the interpreter to the respective values. Error: if p
has more than one variable y
.
- zerosOf : SparseUnivariatePolynomial(%) -> List(%)
zerosOf(p)
returns [y1, ..., yn]
such that p(yi
) = 0
. The yi
's
are expressed in radicals if possible. Otherwise they are implicit algebraic quantities containing new symbols. The new symbols are bound in the interpreter to the respective values.
- zerosOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
zerosOf(p, y)
returns [y1, ..., yn]
such that p(yi
) = 0
. The yi
's
are expressed in radicals if possible, and otherwise as implicit algebraic quantities containing new symbols which display as '%z0
, '%z1
, ...; The new symbols are bound in the interpreter to respective values.
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
Module(Fraction(Integer))
noZeroDivisors
LeftModule(Fraction(Integer))
canonicalsClosed
Algebra(%)
Monoid
GcdDomain
AbelianMonoid
EuclideanDomain
EntireRing
NonAssociativeSemiRng
NonAssociativeAlgebra(Fraction(Integer))
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
RightModule(Fraction(Integer))
unitsKnown
TwoSidedRecip
LeftModule(%)
canonicalUnitNormal
RadicalCategory
Module(%)
Magma
SetCategory
LeftOreRing
CoercibleTo(OutputForm)
Algebra(Fraction(Integer))
Rng
Field
CommutativeRing
UniqueFactorizationDomain
SemiGroup
DivisionRing
BiModule(%, %)
AbelianGroup
AbelianSemiGroup
CommutativeStar
NonAssociativeSemiRing
RightModule(%)
NonAssociativeAlgebra(%)
PrincipalIdealDomain
BiModule(Fraction(Integer), Fraction(Integer))
NonAssociativeRng
Ring
SemiRng
BasicType
SemiRing