AlgebraicallyClosedField

algfunc.spad line 1 [edit on github]

Model for algebraically closed fields.

* : (%, %) -> %
from Magma
* : (%, Fraction(Integer)) -> %
from RightModule(Fraction(Integer))
* : (Fraction(Integer), %) -> %
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, %) -> %
from Field
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, Fraction(Integer)) -> %
from RadicalCategory
^ : (%, Integer) -> %
from DivisionRing
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Fraction(Integer) -> %
from Algebra(Fraction(Integer))
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
factor : % -> Factored(%)
from UniqueFactorizationDomain
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
inv : % -> %
from DivisionRing
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
nthRoot : (%, Integer) -> %
from RadicalCategory
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
prime? : % -> Boolean
from UniqueFactorizationDomain
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
recip : % -> Union(%, "failed")
from MagmaWithUnit
rem : (%, %) -> %
from EuclideanDomain
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
rootOf : Polynomial(%) -> %

rootOf(p) returns y such that p(y) = 0. Error: if p has more than one variable y.

rootOf : SparseUnivariatePolynomial(%) -> %

rootOf(p) returns y such that p(y) = 0.

rootOf : (SparseUnivariatePolynomial(%), Symbol) -> %

rootOf(p, y) returns y such that p(y) = 0. The object returned displays as 'y.

rootsOf : Polynomial(%) -> List(%)

rootsOf(p) returns [y1, ..., yn] such that p(yi) = 0. Note: the returned values y1, ..., yn contain new symbols which are bound in the interpreter to the respective values. Error: if p has more than one variable y.

rootsOf : SparseUnivariatePolynomial(%) -> List(%)

rootsOf(p) returns [y1, ..., yn] such that p(yi) = 0. Note: the returned values y1, ..., yn contain new symbols which are bound in the interpreter to the respective values.

rootsOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)

rootsOf(p, z) returns [y1, ..., yn] such that p(yi) = 0; The returned roots contain new symbols '%z0, '%z1 ...; Note: the new symbols are bound in the interpreter to the respective values.

sample : () -> %
from AbelianMonoid
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
sqrt : % -> %
from RadicalCategory
squareFree : % -> Factored(%)
from UniqueFactorizationDomain
squareFreePart : % -> %
from UniqueFactorizationDomain
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
zeroOf : Polynomial(%) -> %

zeroOf(p) returns y such that p(y) = 0. If possible, y is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if p has more than one variable y.

zeroOf : SparseUnivariatePolynomial(%) -> %

zeroOf(p) returns y such that p(y) = 0; if possible, y is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.

zeroOf : (SparseUnivariatePolynomial(%), Symbol) -> %

zeroOf(p, y) returns y such that p(y) = 0; if possible, y is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as 'y.

zerosOf : Polynomial(%) -> List(%)

zerosOf(p) returns [y1, ..., yn] such that p(yi) = 0. The yi's are expressed in radicals if possible. Otherwise they are implicit algebraic quantities containing new symbols. The new symbols are bound in the interpreter to the respective values. Error: if p has more than one variable y.

zerosOf : SparseUnivariatePolynomial(%) -> List(%)

zerosOf(p) returns [y1, ..., yn] such that p(yi) = 0. The yi's are expressed in radicals if possible. Otherwise they are implicit algebraic quantities containing new symbols. The new symbols are bound in the interpreter to the respective values.

zerosOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)

zerosOf(p, y) returns [y1, ..., yn] such that p(yi) = 0. The yi's are expressed in radicals if possible, and otherwise as implicit algebraic quantities containing new symbols which display as '%z0, '%z1, ...; The new symbols are bound in the interpreter to respective values.

~= : (%, %) -> Boolean
from BasicType

IntegralDomain

Module(Fraction(Integer))

noZeroDivisors

LeftModule(Fraction(Integer))

canonicalsClosed

Algebra(%)

Monoid

GcdDomain

AbelianMonoid

EuclideanDomain

EntireRing

NonAssociativeSemiRng

NonAssociativeAlgebra(Fraction(Integer))

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

RightModule(Fraction(Integer))

unitsKnown

TwoSidedRecip

LeftModule(%)

canonicalUnitNormal

RadicalCategory

Module(%)

Magma

SetCategory

LeftOreRing

CoercibleTo(OutputForm)

Algebra(Fraction(Integer))

Rng

Field

CommutativeRing

UniqueFactorizationDomain

SemiGroup

DivisionRing

BiModule(%, %)

AbelianGroup

AbelianSemiGroup

CommutativeStar

NonAssociativeSemiRing

RightModule(%)

NonAssociativeAlgebra(%)

PrincipalIdealDomain

BiModule(Fraction(Integer), Fraction(Integer))

NonAssociativeRng

Ring

SemiRng

BasicType

SemiRing