AlgebraicallyClosedFunctionSpace(R)
algfunc.spad line 147
[edit on github]
Model for algebraically closed function spaces.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Group
- / : (SparseMultivariatePolynomial(R, Kernel(%)), SparseMultivariatePolynomial(R, Kernel(%))) -> %
- from FunctionSpace2(R, Kernel(%))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- ^ : (%, Fraction(Integer)) -> %
- from RadicalCategory
- ^ : (%, Integer) -> %
- from Group
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- algtower : % -> List(Kernel(%))
- from FunctionSpace2(R, Kernel(%))
- algtower : List(%) -> List(Kernel(%))
- from FunctionSpace2(R, Kernel(%))
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- applyQuote : (Symbol, %) -> %
- from FunctionSpace2(R, Kernel(%))
- applyQuote : (Symbol, %, %) -> %
- from FunctionSpace2(R, Kernel(%))
- applyQuote : (Symbol, %, %, %) -> %
- from FunctionSpace2(R, Kernel(%))
- applyQuote : (Symbol, %, %, %, %) -> %
- from FunctionSpace2(R, Kernel(%))
- applyQuote : (Symbol, List(%)) -> %
- from FunctionSpace2(R, Kernel(%))
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- belong? : BasicOperator -> Boolean
- from ExpressionSpace2(Kernel(%))
- box : % -> %
- from ExpressionSpace2(Kernel(%))
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : % -> %
- from Algebra(%)
- coerce : R -> %
- from CoercibleFrom(R)
- coerce : AlgebraicNumber -> % if R has RetractableTo(Integer)
- from CoercibleFrom(AlgebraicNumber)
- coerce : Fraction(R) -> %
- from FunctionSpace2(R, Kernel(%))
- coerce : Fraction(Integer) -> %
- from CoercibleFrom(Fraction(Integer))
- coerce : Fraction(Polynomial(R)) -> %
- from CoercibleFrom(Fraction(Polynomial(R)))
- coerce : Fraction(Polynomial(Fraction(R))) -> %
- from FunctionSpace2(R, Kernel(%))
- coerce : Integer -> %
- from CoercibleFrom(Integer)
- coerce : Kernel(%) -> %
- from CoercibleFrom(Kernel(%))
- coerce : Polynomial(R) -> %
- from CoercibleFrom(Polynomial(R))
- coerce : Polynomial(Fraction(R)) -> %
- from FunctionSpace2(R, Kernel(%))
- coerce : SparseMultivariatePolynomial(R, Kernel(%)) -> %
- from FunctionSpace2(R, Kernel(%))
- coerce : Symbol -> %
- from CoercibleFrom(Symbol)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conjugate : (%, %) -> % if R has Group
- from Group
- convert : Factored(%) -> %
- from FunctionSpace2(R, Kernel(%))
- convert : % -> InputForm if R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- definingPolynomial : % -> %
- from ExpressionSpace2(Kernel(%))
- denom : % -> SparseMultivariatePolynomial(R, Kernel(%))
- from FunctionSpace2(R, Kernel(%))
- denominator : % -> %
- from FunctionSpace2(R, Kernel(%))
- differentiate : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- distribute : % -> %
- from ExpressionSpace2(Kernel(%))
- distribute : (%, %) -> %
- from ExpressionSpace2(Kernel(%))
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- elt : (BasicOperator, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, BasicOperator, %, Symbol) -> % if R has ConvertibleTo(InputForm)
- from FunctionSpace2(R, Kernel(%))
- eval : (%, BasicOperator, Mapping(%, %)) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, BasicOperator, Mapping(%, List(%))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, Kernel(%), %) -> %
- from InnerEvalable(Kernel(%), %)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(BasicOperator), List(%), Symbol) -> % if R has ConvertibleTo(InputForm)
- from FunctionSpace2(R, Kernel(%))
- eval : (%, List(BasicOperator), List(Mapping(%, %))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(BasicOperator), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- eval : (%, List(Kernel(%)), List(%)) -> %
- from InnerEvalable(Kernel(%), %)
- eval : (%, List(Symbol), List(Mapping(%, %))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Symbol), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, %))) -> %
- from FunctionSpace2(R, Kernel(%))
- eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, List(%)))) -> %
- from FunctionSpace2(R, Kernel(%))
- eval : (%, Symbol, Mapping(%, %)) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Symbol, Mapping(%, List(%))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Symbol, NonNegativeInteger, Mapping(%, %)) -> %
- from FunctionSpace2(R, Kernel(%))
- eval : (%, Symbol, NonNegativeInteger, Mapping(%, List(%))) -> %
- from FunctionSpace2(R, Kernel(%))
- even? : % -> Boolean if % has RetractableTo(Integer)
- from ExpressionSpace2(Kernel(%))
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- freeOf? : (%, %) -> Boolean
- from ExpressionSpace2(Kernel(%))
- freeOf? : (%, Symbol) -> Boolean
- from ExpressionSpace2(Kernel(%))
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from GcdDomain
- ground : % -> R
- from FunctionSpace2(R, Kernel(%))
- ground? : % -> Boolean
- from FunctionSpace2(R, Kernel(%))
- height : % -> NonNegativeInteger
- from ExpressionSpace2(Kernel(%))
- inv : % -> %
- from Group
- is? : (%, BasicOperator) -> Boolean
- from ExpressionSpace2(Kernel(%))
- is? : (%, Symbol) -> Boolean
- from ExpressionSpace2(Kernel(%))
- isExpt : % -> Union(Record(var : Kernel(%), exponent : Integer), "failed")
- from FunctionSpace2(R, Kernel(%))
- isExpt : (%, BasicOperator) -> Union(Record(var : Kernel(%), exponent : Integer), "failed")
- from FunctionSpace2(R, Kernel(%))
- isExpt : (%, Symbol) -> Union(Record(var : Kernel(%), exponent : Integer), "failed")
- from FunctionSpace2(R, Kernel(%))
- isMult : % -> Union(Record(coef : Integer, var : Kernel(%)), "failed")
- from FunctionSpace2(R, Kernel(%))
- isPlus : % -> Union(List(%), "failed")
- from FunctionSpace2(R, Kernel(%))
- isPower : % -> Union(Record(val : %, exponent : Integer), "failed")
- from FunctionSpace2(R, Kernel(%))
- isTimes : % -> Union(List(%), "failed")
- from FunctionSpace2(R, Kernel(%))
- kernel : (BasicOperator, %) -> %
- from ExpressionSpace2(Kernel(%))
- kernel : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- kernels : % -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- kernels : List(%) -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- mainKernel : % -> Union(Kernel(%), "failed")
- from ExpressionSpace2(Kernel(%))
- map : (Mapping(%, %), Kernel(%)) -> %
- from ExpressionSpace2(Kernel(%))
- minPoly : Kernel(%) -> SparseUnivariatePolynomial(%)
- from ExpressionSpace2(Kernel(%))
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- nthRoot : (%, Integer) -> %
- from RadicalCategory
- numer : % -> SparseMultivariatePolynomial(R, Kernel(%))
- from FunctionSpace2(R, Kernel(%))
- numerator : % -> %
- from FunctionSpace2(R, Kernel(%))
- odd? : % -> Boolean if % has RetractableTo(Integer)
- from ExpressionSpace2(Kernel(%))
- one? : % -> Boolean
- from MagmaWithUnit
- operator : BasicOperator -> BasicOperator
- from ExpressionSpace2(Kernel(%))
- operators : % -> List(BasicOperator)
- from ExpressionSpace2(Kernel(%))
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- paren : % -> %
- from ExpressionSpace2(Kernel(%))
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R)
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
- from LinearlyExplicitOver(Integer)
- rem : (%, %) -> %
- from EuclideanDomain
- retract : % -> R
- from RetractableTo(R)
- retract : % -> AlgebraicNumber if R has RetractableTo(Integer)
- from RetractableTo(AlgebraicNumber)
- retract : % -> Fraction(Integer) if R has RetractableTo(Integer) or R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Fraction(Polynomial(R))
- from RetractableTo(Fraction(Polynomial(R)))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retract : % -> Kernel(%)
- from RetractableTo(Kernel(%))
- retract : % -> Polynomial(R)
- from RetractableTo(Polynomial(R))
- retract : % -> Symbol
- from RetractableTo(Symbol)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(AlgebraicNumber, "failed") if R has RetractableTo(Integer)
- from RetractableTo(AlgebraicNumber)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Integer) or R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Fraction(Polynomial(R)), "failed")
- from RetractableTo(Fraction(Polynomial(R)))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Kernel(%), "failed")
- from RetractableTo(Kernel(%))
- retractIfCan : % -> Union(Polynomial(R), "failed")
- from RetractableTo(Polynomial(R))
- retractIfCan : % -> Union(Symbol, "failed")
- from RetractableTo(Symbol)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rootOf : % -> %
rootOf(p)
returns y
such that p(y) = 0
. Error: if p
has more than one variable y
.
- rootOf : (%, Symbol) -> %
rootOf(p, y)
returns y
such that p(y) = 0
. The object returned displays as 'y
.
- rootOf : Polynomial(%) -> %
- from AlgebraicallyClosedField
- rootOf : SparseUnivariatePolynomial(%) -> %
- from AlgebraicallyClosedField
- rootOf : (SparseUnivariatePolynomial(%), Symbol) -> %
- from AlgebraicallyClosedField
- rootSum : (%, SparseUnivariatePolynomial(%), Symbol) -> %
- rootsOf : % -> List(%)
rootsOf(p, y)
returns [y1, ..., yn]
such that p(yi
) = 0
; Note: the returned values y1
, ..., yn
contain new symbols which are bound in the interpreter to the respective values. Error: if p
has more than one variable y
.
- rootsOf : (%, Symbol) -> List(%)
rootsOf(p, y)
returns [y1, ..., yn]
such that p(yi
) = 0
; The returned roots contain new symbols '%z0
, '%z1
...; Note: the new symbols are bound in the interpreter to the respective values.
- rootsOf : Polynomial(%) -> List(%)
- from AlgebraicallyClosedField
- rootsOf : SparseUnivariatePolynomial(%) -> List(%)
- from AlgebraicallyClosedField
- rootsOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
- from AlgebraicallyClosedField
- sample : () -> %
- from AbelianMonoid
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- sqrt : % -> %
- from RadicalCategory
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- subst : (%, Equation(%)) -> %
- from ExpressionSpace2(Kernel(%))
- subst : (%, List(Equation(%))) -> %
- from ExpressionSpace2(Kernel(%))
- subst : (%, List(Kernel(%)), List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tower : % -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- tower : List(%) -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- univariate : (%, Kernel(%)) -> Fraction(SparseUnivariatePolynomial(%))
- from FunctionSpace2(R, Kernel(%))
- variables : % -> List(Symbol)
- from FunctionSpace2(R, Kernel(%))
- variables : List(%) -> List(Symbol)
- from FunctionSpace2(R, Kernel(%))
- zero? : % -> Boolean
- from AbelianMonoid
- zeroOf : % -> %
zeroOf(p)
returns y
such that p(y) = 0
. The value y
is expressed in terms of radicals if possible, and otherwise as an implicit algebraic quantity. Error: if p
has more than one variable.
- zeroOf : (%, Symbol) -> %
zeroOf(p, y)
returns y
such that p(y) = 0
. The value y
is expressed in terms of radicals if possible, and otherwise as an implicit algebraic quantity which displays as 'y
.
- zeroOf : Polynomial(%) -> %
- from AlgebraicallyClosedField
- zeroOf : SparseUnivariatePolynomial(%) -> %
- from AlgebraicallyClosedField
- zeroOf : (SparseUnivariatePolynomial(%), Symbol) -> %
- from AlgebraicallyClosedField
- zerosOf : % -> List(%)
zerosOf(p)
returns [y1, ..., yn]
such that p(yi
) = 0
. The yi
's
are expressed in radicals if possible. Note: the returned values y1
, ..., yn
contain new symbols which are bound in the interpreter to the respective values. Error: if p
has more than one variable.
- zerosOf : (%, Symbol) -> List(%)
zerosOf(p, y)
returns [y1, ..., yn]
such that p(yi
) = 0
. The yi
's
are expressed in radicals if possible, and otherwise as implicit algebraic quantities containing new symbols which display as '%z0
, '%z1
, ...; The new symbols are bound in the interpreter to the respective values.
- zerosOf : Polynomial(%) -> List(%)
- from AlgebraicallyClosedField
- zerosOf : SparseUnivariatePolynomial(%) -> List(%)
- from AlgebraicallyClosedField
- zerosOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
- from AlgebraicallyClosedField
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
PrincipalIdealDomain
NonAssociativeSemiRing
LeftModule(R)
BiModule(%, %)
RetractableTo(Symbol)
ConvertibleTo(InputForm)
Field
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
FullyRetractableTo(R)
SemiRing
EntireRing
PatternMatchable(Float)
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
RadicalCategory
FullyLinearlyExplicitOver(R)
NonAssociativeRng
CharacteristicNonZero
RetractableTo(Fraction(Polynomial(R)))
PartialDifferentialRing(Symbol)
CoercibleFrom(R)
InnerEvalable(%, %)
SemiGroup
RightModule(Fraction(Integer))
CoercibleFrom(AlgebraicNumber)
Magma
RightModule(R)
GcdDomain
IntegralDomain
LeftModule(%)
NonAssociativeRing
UniqueFactorizationDomain
ExpressionSpace2(Kernel(%))
CharacteristicZero
RetractableTo(Kernel(%))
Algebra(%)
Module(R)
FunctionSpace(R)
CoercibleFrom(Fraction(Integer))
BiModule(R, R)
DivisionRing
Algebra(R)
CommutativeRing
canonicalsClosed
LinearlyExplicitOver(R)
NonAssociativeSemiRng
CancellationAbelianMonoid
EuclideanDomain
Comparable
TwoSidedRecip
Group
RetractableTo(Integer)
AlgebraicallyClosedField
FunctionSpace2(R, Kernel(%))
ExpressionSpace
CommutativeStar
AbelianMonoid
MagmaWithUnit
SemiRng
CoercibleFrom(Symbol)
RightModule(%)
CoercibleFrom(Polynomial(R))
InnerEvalable(Kernel(%), %)
CoercibleFrom(Kernel(%))
Module(%)
ConvertibleTo(Pattern(Float))
LinearlyExplicitOver(Integer)
CoercibleTo(OutputForm)
RetractableTo(AlgebraicNumber)
ConvertibleTo(Pattern(Integer))
Patternable(R)
Monoid
LeftOreRing
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
RetractableTo(Polynomial(R))
Ring
RightModule(Integer)
LeftModule(Fraction(Integer))
AbelianSemiGroup
SetCategory
noZeroDivisors
CoercibleFrom(Fraction(Polynomial(R)))
PatternMatchable(Integer)
Evalable(%)
BiModule(Fraction(Integer), Fraction(Integer))
FullyPatternMatchable(R)
RetractableTo(R)
AbelianGroup
RetractableTo(Fraction(Integer))
NonAssociativeAlgebra(R)