AlgebraicallyClosedFunctionSpace(R)

algfunc.spad line 147 [edit on github]

Model for algebraically closed function spaces.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (%, Fraction(Integer)) -> %
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if R has LinearlyExplicitOver(Integer)
from RightModule(Integer)
* : (R, %) -> %
from LeftModule(R)
* : (Fraction(Integer), %) -> %
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, %) -> %
from Group
/ : (SparseMultivariatePolynomial(R, Kernel(%)), SparseMultivariatePolynomial(R, Kernel(%))) -> %
from FunctionSpace2(R, Kernel(%))
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
D : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
^ : (%, Fraction(Integer)) -> %
from RadicalCategory
^ : (%, Integer) -> %
from Group
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
algtower : % -> List(Kernel(%))
from FunctionSpace2(R, Kernel(%))
algtower : List(%) -> List(Kernel(%))
from FunctionSpace2(R, Kernel(%))
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
applyQuote : (Symbol, %) -> %
from FunctionSpace2(R, Kernel(%))
applyQuote : (Symbol, %, %) -> %
from FunctionSpace2(R, Kernel(%))
applyQuote : (Symbol, %, %, %) -> %
from FunctionSpace2(R, Kernel(%))
applyQuote : (Symbol, %, %, %, %) -> %
from FunctionSpace2(R, Kernel(%))
applyQuote : (Symbol, List(%)) -> %
from FunctionSpace2(R, Kernel(%))
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
belong? : BasicOperator -> Boolean
from ExpressionSpace2(Kernel(%))
box : % -> %
from ExpressionSpace2(Kernel(%))
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
from CharacteristicNonZero
coerce : % -> %
from Algebra(%)
coerce : R -> %
from CoercibleFrom(R)
coerce : AlgebraicNumber -> % if R has RetractableTo(Integer)
from CoercibleFrom(AlgebraicNumber)
coerce : Fraction(R) -> %
from FunctionSpace2(R, Kernel(%))
coerce : Fraction(Integer) -> %
from CoercibleFrom(Fraction(Integer))
coerce : Fraction(Polynomial(R)) -> %
from CoercibleFrom(Fraction(Polynomial(R)))
coerce : Fraction(Polynomial(Fraction(R))) -> %
from FunctionSpace2(R, Kernel(%))
coerce : Integer -> %
from CoercibleFrom(Integer)
coerce : Kernel(%) -> %
from CoercibleFrom(Kernel(%))
coerce : Polynomial(R) -> %
from CoercibleFrom(Polynomial(R))
coerce : Polynomial(Fraction(R)) -> %
from FunctionSpace2(R, Kernel(%))
coerce : SparseMultivariatePolynomial(R, Kernel(%)) -> %
from FunctionSpace2(R, Kernel(%))
coerce : Symbol -> %
from CoercibleFrom(Symbol)
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
conjugate : (%, %) -> % if R has Group
from Group
convert : Factored(%) -> %
from FunctionSpace2(R, Kernel(%))
convert : % -> InputForm if R has ConvertibleTo(InputForm)
from ConvertibleTo(InputForm)
convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float))
from ConvertibleTo(Pattern(Float))
convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer))
from ConvertibleTo(Pattern(Integer))
definingPolynomial : % -> %
from ExpressionSpace2(Kernel(%))
denom : % -> SparseMultivariatePolynomial(R, Kernel(%))
from FunctionSpace2(R, Kernel(%))
denominator : % -> %
from FunctionSpace2(R, Kernel(%))
differentiate : (%, List(Symbol)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol) -> %
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> %
from PartialDifferentialRing(Symbol)
distribute : % -> %
from ExpressionSpace2(Kernel(%))
distribute : (%, %) -> %
from ExpressionSpace2(Kernel(%))
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
elt : (BasicOperator, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, List(%)) -> %
from ExpressionSpace2(Kernel(%))
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
eval : (%, %, %) -> %
from InnerEvalable(%, %)
eval : (%, BasicOperator, %, Symbol) -> % if R has ConvertibleTo(InputForm)
from FunctionSpace2(R, Kernel(%))
eval : (%, BasicOperator, Mapping(%, %)) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, BasicOperator, Mapping(%, List(%))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, Equation(%)) -> %
from Evalable(%)
eval : (%, Kernel(%), %) -> %
from InnerEvalable(Kernel(%), %)
eval : (%, List(%), List(%)) -> %
from InnerEvalable(%, %)
eval : (%, List(BasicOperator), List(%), Symbol) -> % if R has ConvertibleTo(InputForm)
from FunctionSpace2(R, Kernel(%))
eval : (%, List(BasicOperator), List(Mapping(%, %))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, List(BasicOperator), List(Mapping(%, List(%)))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, List(Equation(%))) -> %
from Evalable(%)
eval : (%, List(Kernel(%)), List(%)) -> %
from InnerEvalable(Kernel(%), %)
eval : (%, List(Symbol), List(Mapping(%, %))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, List(Symbol), List(Mapping(%, List(%)))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, %))) -> %
from FunctionSpace2(R, Kernel(%))
eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, List(%)))) -> %
from FunctionSpace2(R, Kernel(%))
eval : (%, Symbol, Mapping(%, %)) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, Symbol, Mapping(%, List(%))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, Symbol, NonNegativeInteger, Mapping(%, %)) -> %
from FunctionSpace2(R, Kernel(%))
eval : (%, Symbol, NonNegativeInteger, Mapping(%, List(%))) -> %
from FunctionSpace2(R, Kernel(%))
even? : % -> Boolean if % has RetractableTo(Integer)
from ExpressionSpace2(Kernel(%))
expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
factor : % -> Factored(%)
from UniqueFactorizationDomain
freeOf? : (%, %) -> Boolean
from ExpressionSpace2(Kernel(%))
freeOf? : (%, Symbol) -> Boolean
from ExpressionSpace2(Kernel(%))
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from GcdDomain
ground : % -> R
from FunctionSpace2(R, Kernel(%))
ground? : % -> Boolean
from FunctionSpace2(R, Kernel(%))
height : % -> NonNegativeInteger
from ExpressionSpace2(Kernel(%))
inv : % -> %
from Group
is? : (%, BasicOperator) -> Boolean
from ExpressionSpace2(Kernel(%))
is? : (%, Symbol) -> Boolean
from ExpressionSpace2(Kernel(%))
isExpt : % -> Union(Record(var : Kernel(%), exponent : Integer), "failed")
from FunctionSpace2(R, Kernel(%))
isExpt : (%, BasicOperator) -> Union(Record(var : Kernel(%), exponent : Integer), "failed")
from FunctionSpace2(R, Kernel(%))
isExpt : (%, Symbol) -> Union(Record(var : Kernel(%), exponent : Integer), "failed")
from FunctionSpace2(R, Kernel(%))
isMult : % -> Union(Record(coef : Integer, var : Kernel(%)), "failed")
from FunctionSpace2(R, Kernel(%))
isPlus : % -> Union(List(%), "failed")
from FunctionSpace2(R, Kernel(%))
isPower : % -> Union(Record(val : %, exponent : Integer), "failed")
from FunctionSpace2(R, Kernel(%))
isTimes : % -> Union(List(%), "failed")
from FunctionSpace2(R, Kernel(%))
kernel : (BasicOperator, %) -> %
from ExpressionSpace2(Kernel(%))
kernel : (BasicOperator, List(%)) -> %
from ExpressionSpace2(Kernel(%))
kernels : % -> List(Kernel(%))
from ExpressionSpace2(Kernel(%))
kernels : List(%) -> List(Kernel(%))
from ExpressionSpace2(Kernel(%))
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
mainKernel : % -> Union(Kernel(%), "failed")
from ExpressionSpace2(Kernel(%))
map : (Mapping(%, %), Kernel(%)) -> %
from ExpressionSpace2(Kernel(%))
minPoly : Kernel(%) -> SparseUnivariatePolynomial(%)
from ExpressionSpace2(Kernel(%))
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
nthRoot : (%, Integer) -> %
from RadicalCategory
numer : % -> SparseMultivariatePolynomial(R, Kernel(%))
from FunctionSpace2(R, Kernel(%))
numerator : % -> %
from FunctionSpace2(R, Kernel(%))
odd? : % -> Boolean if % has RetractableTo(Integer)
from ExpressionSpace2(Kernel(%))
one? : % -> Boolean
from MagmaWithUnit
operator : BasicOperator -> BasicOperator
from ExpressionSpace2(Kernel(%))
operators : % -> List(BasicOperator)
from ExpressionSpace2(Kernel(%))
opposite? : (%, %) -> Boolean
from AbelianMonoid
paren : % -> %
from ExpressionSpace2(Kernel(%))
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable(Float)
from PatternMatchable(Float)
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable(Integer)
from PatternMatchable(Integer)
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(R)
prime? : % -> Boolean
from UniqueFactorizationDomain
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
recip : % -> Union(%, "failed")
from MagmaWithUnit
reducedSystem : Matrix(%) -> Matrix(R)
from LinearlyExplicitOver(R)
reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R))
from LinearlyExplicitOver(R)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer)
from LinearlyExplicitOver(Integer)
rem : (%, %) -> %
from EuclideanDomain
retract : % -> R
from RetractableTo(R)
retract : % -> AlgebraicNumber if R has RetractableTo(Integer)
from RetractableTo(AlgebraicNumber)
retract : % -> Fraction(Integer) if R has RetractableTo(Integer) or R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Fraction(Polynomial(R))
from RetractableTo(Fraction(Polynomial(R)))
retract : % -> Integer if R has RetractableTo(Integer)
from RetractableTo(Integer)
retract : % -> Kernel(%)
from RetractableTo(Kernel(%))
retract : % -> Polynomial(R)
from RetractableTo(Polynomial(R))
retract : % -> Symbol
from RetractableTo(Symbol)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(AlgebraicNumber, "failed") if R has RetractableTo(Integer)
from RetractableTo(AlgebraicNumber)
retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Integer) or R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Fraction(Polynomial(R)), "failed")
from RetractableTo(Fraction(Polynomial(R)))
retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(Kernel(%), "failed")
from RetractableTo(Kernel(%))
retractIfCan : % -> Union(Polynomial(R), "failed")
from RetractableTo(Polynomial(R))
retractIfCan : % -> Union(Symbol, "failed")
from RetractableTo(Symbol)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
rootOf : % -> %

rootOf(p) returns y such that p(y) = 0. Error: if p has more than one variable y.

rootOf : (%, Symbol) -> %

rootOf(p, y) returns y such that p(y) = 0. The object returned displays as 'y.

rootOf : Polynomial(%) -> %
from AlgebraicallyClosedField
rootOf : SparseUnivariatePolynomial(%) -> %
from AlgebraicallyClosedField
rootOf : (SparseUnivariatePolynomial(%), Symbol) -> %
from AlgebraicallyClosedField
rootSum : (%, SparseUnivariatePolynomial(%), Symbol) -> %

rootsOf : % -> List(%)

rootsOf(p, y) returns [y1, ..., yn] such that p(yi) = 0; Note: the returned values y1, ..., yn contain new symbols which are bound in the interpreter to the respective values. Error: if p has more than one variable y.

rootsOf : (%, Symbol) -> List(%)

rootsOf(p, y) returns [y1, ..., yn] such that p(yi) = 0; The returned roots contain new symbols '%z0, '%z1 ...; Note: the new symbols are bound in the interpreter to the respective values.

rootsOf : Polynomial(%) -> List(%)
from AlgebraicallyClosedField
rootsOf : SparseUnivariatePolynomial(%) -> List(%)
from AlgebraicallyClosedField
rootsOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
from AlgebraicallyClosedField
sample : () -> %
from AbelianMonoid
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
smaller? : (%, %) -> Boolean
from Comparable
sqrt : % -> %
from RadicalCategory
squareFree : % -> Factored(%)
from UniqueFactorizationDomain
squareFreePart : % -> %
from UniqueFactorizationDomain
subst : (%, Equation(%)) -> %
from ExpressionSpace2(Kernel(%))
subst : (%, List(Equation(%))) -> %
from ExpressionSpace2(Kernel(%))
subst : (%, List(Kernel(%)), List(%)) -> %
from ExpressionSpace2(Kernel(%))
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
tower : % -> List(Kernel(%))
from ExpressionSpace2(Kernel(%))
tower : List(%) -> List(Kernel(%))
from ExpressionSpace2(Kernel(%))
unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
univariate : (%, Kernel(%)) -> Fraction(SparseUnivariatePolynomial(%))
from FunctionSpace2(R, Kernel(%))
variables : % -> List(Symbol)
from FunctionSpace2(R, Kernel(%))
variables : List(%) -> List(Symbol)
from FunctionSpace2(R, Kernel(%))
zero? : % -> Boolean
from AbelianMonoid
zeroOf : % -> %

zeroOf(p) returns y such that p(y) = 0. The value y is expressed in terms of radicals if possible, and otherwise as an implicit algebraic quantity. Error: if p has more than one variable.

zeroOf : (%, Symbol) -> %

zeroOf(p, y) returns y such that p(y) = 0. The value y is expressed in terms of radicals if possible, and otherwise as an implicit algebraic quantity which displays as 'y.

zeroOf : Polynomial(%) -> %
from AlgebraicallyClosedField
zeroOf : SparseUnivariatePolynomial(%) -> %
from AlgebraicallyClosedField
zeroOf : (SparseUnivariatePolynomial(%), Symbol) -> %
from AlgebraicallyClosedField
zerosOf : % -> List(%)

zerosOf(p) returns [y1, ..., yn] such that p(yi) = 0. The yi's are expressed in radicals if possible. Note: the returned values y1, ..., yn contain new symbols which are bound in the interpreter to the respective values. Error: if p has more than one variable.

zerosOf : (%, Symbol) -> List(%)

zerosOf(p, y) returns [y1, ..., yn] such that p(yi) = 0. The yi's are expressed in radicals if possible, and otherwise as implicit algebraic quantities containing new symbols which display as '%z0, '%z1, ...; The new symbols are bound in the interpreter to the respective values.

zerosOf : Polynomial(%) -> List(%)
from AlgebraicallyClosedField
zerosOf : SparseUnivariatePolynomial(%) -> List(%)
from AlgebraicallyClosedField
zerosOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
from AlgebraicallyClosedField
~= : (%, %) -> Boolean
from BasicType

Module(Fraction(Integer))

PrincipalIdealDomain

NonAssociativeSemiRing

LeftModule(R)

BiModule(%, %)

RetractableTo(Symbol)

ConvertibleTo(InputForm)

Field

canonicalUnitNormal

Rng

CoercibleFrom(Integer)

FullyRetractableTo(R)

SemiRing

EntireRing

PatternMatchable(Float)

NonAssociativeAlgebra(Fraction(Integer))

unitsKnown

RadicalCategory

FullyLinearlyExplicitOver(R)

NonAssociativeRng

CharacteristicNonZero

RetractableTo(Fraction(Polynomial(R)))

PartialDifferentialRing(Symbol)

CoercibleFrom(R)

InnerEvalable(%, %)

SemiGroup

RightModule(Fraction(Integer))

CoercibleFrom(AlgebraicNumber)

Magma

RightModule(R)

GcdDomain

IntegralDomain

LeftModule(%)

NonAssociativeRing

UniqueFactorizationDomain

ExpressionSpace2(Kernel(%))

CharacteristicZero

RetractableTo(Kernel(%))

Algebra(%)

Module(R)

FunctionSpace(R)

CoercibleFrom(Fraction(Integer))

BiModule(R, R)

DivisionRing

Algebra(R)

CommutativeRing

canonicalsClosed

LinearlyExplicitOver(R)

NonAssociativeSemiRng

CancellationAbelianMonoid

EuclideanDomain

Comparable

TwoSidedRecip

Group

RetractableTo(Integer)

AlgebraicallyClosedField

FunctionSpace2(R, Kernel(%))

ExpressionSpace

CommutativeStar

AbelianMonoid

MagmaWithUnit

SemiRng

CoercibleFrom(Symbol)

RightModule(%)

CoercibleFrom(Polynomial(R))

InnerEvalable(Kernel(%), %)

CoercibleFrom(Kernel(%))

Module(%)

ConvertibleTo(Pattern(Float))

LinearlyExplicitOver(Integer)

CoercibleTo(OutputForm)

RetractableTo(AlgebraicNumber)

ConvertibleTo(Pattern(Integer))

Patternable(R)

Monoid

LeftOreRing

NonAssociativeAlgebra(%)

Algebra(Fraction(Integer))

BasicType

RetractableTo(Polynomial(R))

Ring

RightModule(Integer)

LeftModule(Fraction(Integer))

AbelianSemiGroup

SetCategory

noZeroDivisors

CoercibleFrom(Fraction(Polynomial(R)))

PatternMatchable(Integer)

Evalable(%)

BiModule(Fraction(Integer), Fraction(Integer))

FullyPatternMatchable(R)

RetractableTo(R)

AbelianGroup

RetractableTo(Fraction(Integer))

NonAssociativeAlgebra(R)