AlgebraicNumber

constant.spad line 1 [edit on github]

Algebraic closure of the rational numbers.

* : (%, %) -> %
from Magma
* : (%, Fraction(Integer)) -> %
from RightModule(Fraction(Integer))
* : (%, Integer) -> %
from RightModule(Integer)
* : (Fraction(Integer), %) -> %
from LeftModule(Fraction(Integer))
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, %) -> %
from Field
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : % -> %
from DifferentialRing
D : (%, NonNegativeInteger) -> %
from DifferentialRing
^ : (%, Fraction(Integer)) -> %
from RadicalCategory
^ : (%, Integer) -> %
from DivisionRing
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
belong? : BasicOperator -> Boolean
from ExpressionSpace2(Kernel(%))
box : % -> %
from ExpressionSpace2(Kernel(%))
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Fraction(Integer) -> %
from CoercibleFrom(Fraction(Integer))
coerce : Integer -> %
from CoercibleFrom(Integer)
coerce : Kernel(%) -> %
from CoercibleFrom(Kernel(%))
coerce : SparseMultivariatePolynomial(Integer, Kernel(%)) -> %

coerce(p) returns p viewed as an algebraic number.

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
convert : % -> Complex(Float)
from ConvertibleTo(Complex(Float))
convert : % -> DoubleFloat
from ConvertibleTo(DoubleFloat)
convert : % -> Float
from ConvertibleTo(Float)
convert : % -> InputForm
from ConvertibleTo(InputForm)
definingPolynomial : % -> %
from ExpressionSpace2(Kernel(%))
denom : % -> SparseMultivariatePolynomial(Integer, Kernel(%))

denom(f) returns the denominator of f viewed as a polynomial in the kernels over Z.

differentiate : % -> %
from DifferentialRing
differentiate : (%, NonNegativeInteger) -> %
from DifferentialRing
distribute : % -> %
from ExpressionSpace2(Kernel(%))
distribute : (%, %) -> %
from ExpressionSpace2(Kernel(%))
divide : (%, %) -> Record(quotient : %, remainder : %)
from EuclideanDomain
elt : (BasicOperator, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2(Kernel(%))
elt : (BasicOperator, List(%)) -> %
from ExpressionSpace2(Kernel(%))
euclideanSize : % -> NonNegativeInteger
from EuclideanDomain
eval : (%, %, %) -> %
from InnerEvalable(%, %)
eval : (%, BasicOperator, Mapping(%, %)) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, BasicOperator, Mapping(%, List(%))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, Equation(%)) -> %
from Evalable(%)
eval : (%, Kernel(%), %) -> %
from InnerEvalable(Kernel(%), %)
eval : (%, List(%), List(%)) -> %
from InnerEvalable(%, %)
eval : (%, List(BasicOperator), List(Mapping(%, %))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, List(BasicOperator), List(Mapping(%, List(%)))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, List(Equation(%))) -> %
from Evalable(%)
eval : (%, List(Kernel(%)), List(%)) -> %
from InnerEvalable(Kernel(%), %)
eval : (%, List(Symbol), List(Mapping(%, %))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, List(Symbol), List(Mapping(%, List(%)))) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, Symbol, Mapping(%, %)) -> %
from ExpressionSpace2(Kernel(%))
eval : (%, Symbol, Mapping(%, List(%))) -> %
from ExpressionSpace2(Kernel(%))
even? : % -> Boolean
from ExpressionSpace2(Kernel(%))
expressIdealMember : (List(%), %) -> Union(List(%), "failed")
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed")
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
from EuclideanDomain
factor : % -> Factored(%)
from UniqueFactorizationDomain
factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
from PolynomialFactorizationExplicit
factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
from PolynomialFactorizationExplicit
freeOf? : (%, %) -> Boolean
from ExpressionSpace2(Kernel(%))
freeOf? : (%, Symbol) -> Boolean
from ExpressionSpace2(Kernel(%))
gcd : (%, %) -> %
from GcdDomain
gcd : List(%) -> %
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
from PolynomialFactorizationExplicit
height : % -> NonNegativeInteger
from ExpressionSpace2(Kernel(%))
inv : % -> %
from DivisionRing
is? : (%, BasicOperator) -> Boolean
from ExpressionSpace2(Kernel(%))
is? : (%, Symbol) -> Boolean
from ExpressionSpace2(Kernel(%))
kernel : (BasicOperator, %) -> %
from ExpressionSpace2(Kernel(%))
kernel : (BasicOperator, List(%)) -> %
from ExpressionSpace2(Kernel(%))
kernels : % -> List(Kernel(%))
from ExpressionSpace2(Kernel(%))
kernels : List(%) -> List(Kernel(%))
from ExpressionSpace2(Kernel(%))
latex : % -> String
from SetCategory
lcm : (%, %) -> %
from GcdDomain
lcm : List(%) -> %
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
mainKernel : % -> Union(Kernel(%), "failed")
from ExpressionSpace2(Kernel(%))
map : (Mapping(%, %), Kernel(%)) -> %
from ExpressionSpace2(Kernel(%))
minPoly : Kernel(%) -> SparseUnivariatePolynomial(%)
from ExpressionSpace2(Kernel(%))
multiEuclidean : (List(%), %) -> Union(List(%), "failed")
from EuclideanDomain
norm : (%, Kernel(%)) -> %

norm(f, k) computes the norm of the algebraic number f with respect to the extension generated by kernel k

norm : (%, List(Kernel(%))) -> %

norm(f, l) computes the norm of the algebraic number f with respect to the extension generated by kernels l

norm : (SparseUnivariatePolynomial(%), Kernel(%)) -> SparseUnivariatePolynomial(%)

norm(p, k) computes the norm of the polynomial p with respect to the extension generated by kernel k

norm : (SparseUnivariatePolynomial(%), List(Kernel(%))) -> SparseUnivariatePolynomial(%)

norm(p, l) computes the norm of the polynomial p with respect to the extension generated by kernels l

nthRoot : (%, Integer) -> %
from RadicalCategory
numer : % -> SparseMultivariatePolynomial(Integer, Kernel(%))

numer(f) returns the numerator of f viewed as a polynomial in the kernels over Z.

odd? : % -> Boolean
from ExpressionSpace2(Kernel(%))
one? : % -> Boolean
from MagmaWithUnit
operator : BasicOperator -> BasicOperator
from ExpressionSpace2(Kernel(%))
operators : % -> List(BasicOperator)
from ExpressionSpace2(Kernel(%))
opposite? : (%, %) -> Boolean
from AbelianMonoid
paren : % -> %
from ExpressionSpace2(Kernel(%))
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
prime? : % -> Boolean
from UniqueFactorizationDomain
principalIdeal : List(%) -> Record(coef : List(%), generator : %)
from PrincipalIdealDomain
quo : (%, %) -> %
from EuclideanDomain
recip : % -> Union(%, "failed")
from MagmaWithUnit
reduce : % -> %

reduce(f) simplifies all the unreduced algebraic numbers present in f by applying their defining relations.

reducedSystem : Matrix(%) -> Matrix(Fraction(Integer))
from LinearlyExplicitOver(Fraction(Integer))
reducedSystem : Matrix(%) -> Matrix(Integer)
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Fraction(Integer)), vec : Vector(Fraction(Integer)))
from LinearlyExplicitOver(Fraction(Integer))
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer))
from LinearlyExplicitOver(Integer)
rem : (%, %) -> %
from EuclideanDomain
retract : % -> Fraction(Integer)
from RetractableTo(Fraction(Integer))
retract : % -> Integer
from RetractableTo(Integer)
retract : % -> Kernel(%)
from RetractableTo(Kernel(%))
retractIfCan : % -> Union(Fraction(Integer), "failed")
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Integer, "failed")
from RetractableTo(Integer)
retractIfCan : % -> Union(Kernel(%), "failed")
from RetractableTo(Kernel(%))
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
rootOf : Polynomial(%) -> %
from AlgebraicallyClosedField
rootOf : SparseUnivariatePolynomial(%) -> %
from AlgebraicallyClosedField
rootOf : (SparseUnivariatePolynomial(%), Symbol) -> %
from AlgebraicallyClosedField
rootsOf : Polynomial(%) -> List(%)
from AlgebraicallyClosedField
rootsOf : SparseUnivariatePolynomial(%) -> List(%)
from AlgebraicallyClosedField
rootsOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
from AlgebraicallyClosedField
sample : () -> %
from AbelianMonoid
sizeLess? : (%, %) -> Boolean
from EuclideanDomain
smaller? : (%, %) -> Boolean
from Comparable
solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed")
from PolynomialFactorizationExplicit
sqrt : % -> %
from RadicalCategory
squareFree : % -> Factored(%)
from UniqueFactorizationDomain
squareFreePart : % -> %
from UniqueFactorizationDomain
squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
from PolynomialFactorizationExplicit
subst : (%, Equation(%)) -> %
from ExpressionSpace2(Kernel(%))
subst : (%, List(Equation(%))) -> %
from ExpressionSpace2(Kernel(%))
subst : (%, List(Kernel(%)), List(%)) -> %
from ExpressionSpace2(Kernel(%))
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
tower : % -> List(Kernel(%))
from ExpressionSpace2(Kernel(%))
tower : List(%) -> List(Kernel(%))
from ExpressionSpace2(Kernel(%))
trueEqual : (%, %) -> Boolean

trueEqual(x, y) tries to determine if the two numbers are equal

unit? : % -> Boolean
from EntireRing
unitCanonical : % -> %
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %)
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
zeroOf : Polynomial(%) -> %
from AlgebraicallyClosedField
zeroOf : SparseUnivariatePolynomial(%) -> %
from AlgebraicallyClosedField
zeroOf : (SparseUnivariatePolynomial(%), Symbol) -> %
from AlgebraicallyClosedField
zerosOf : Polynomial(%) -> List(%)
from AlgebraicallyClosedField
zerosOf : SparseUnivariatePolynomial(%) -> List(%)
from AlgebraicallyClosedField
zerosOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
from AlgebraicallyClosedField
~= : (%, %) -> Boolean
from BasicType

Algebra(Fraction(Integer))

Module(Fraction(Integer))

ConvertibleTo(Float)

PrincipalIdealDomain

NonAssociativeSemiRing

BiModule(%, %)

ConvertibleTo(InputForm)

Field

canonicalUnitNormal

Rng

CoercibleFrom(Integer)

TwoSidedRecip

SemiRing

EntireRing

NonAssociativeAlgebra(Fraction(Integer))

unitsKnown

ExpressionSpace

RightModule(Integer)

noZeroDivisors

RetractableTo(Fraction(Integer))

Magma

InnerEvalable(%, %)

RightModule(Fraction(Integer))

GcdDomain

IntegralDomain

LeftModule(%)

NonAssociativeRing

UniqueFactorizationDomain

ExpressionSpace2(Kernel(%))

CharacteristicZero

RetractableTo(Kernel(%))

LinearlyExplicitOver(Fraction(Integer))

Algebra(%)

CommutativeRing

DifferentialRing

RadicalCategory

DivisionRing

canonicalsClosed

CancellationAbelianMonoid

EuclideanDomain

Comparable

RetractableTo(Integer)

AlgebraicallyClosedField

CommutativeStar

AbelianMonoid

MagmaWithUnit

NonAssociativeSemiRng

RightModule(%)

SemiGroup

RealConstant

CoercibleFrom(Kernel(%))

ConvertibleTo(DoubleFloat)

Module(%)

CoercibleTo(OutputForm)

LinearlyExplicitOver(Integer)

SemiRng

Monoid

PolynomialFactorizationExplicit

LeftOreRing

NonAssociativeAlgebra(%)

ConvertibleTo(Complex(Float))

BasicType

Ring

InnerEvalable(Kernel(%), %)

LeftModule(Fraction(Integer))

AbelianSemiGroup

SetCategory

CoercibleFrom(Fraction(Integer))

NonAssociativeRng

Evalable(%)

BiModule(Fraction(Integer), Fraction(Integer))

AbelianGroup