AlgebraicNumber
constant.spad line 1
[edit on github]
Algebraic closure of the rational numbers.
- * : (%, %) -> %
- from Magma
- * : (%, Fraction(Integer)) -> %
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> %
- from RightModule(Integer)
- * : (Fraction(Integer), %) -> %
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, %) -> %
- from Field
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : % -> %
- from DifferentialRing
- D : (%, NonNegativeInteger) -> %
- from DifferentialRing
- ^ : (%, Fraction(Integer)) -> %
- from RadicalCategory
- ^ : (%, Integer) -> %
- from DivisionRing
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- belong? : BasicOperator -> Boolean
- from ExpressionSpace2(Kernel(%))
- box : % -> %
- from ExpressionSpace2(Kernel(%))
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Fraction(Integer) -> %
- from CoercibleFrom(Fraction(Integer))
- coerce : Integer -> %
- from CoercibleFrom(Integer)
- coerce : Kernel(%) -> %
- from CoercibleFrom(Kernel(%))
- coerce : SparseMultivariatePolynomial(Integer, Kernel(%)) -> %
coerce(p)
returns p
viewed as an algebraic number.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- convert : % -> Complex(Float)
- from ConvertibleTo(Complex(Float))
- convert : % -> DoubleFloat
- from ConvertibleTo(DoubleFloat)
- convert : % -> Float
- from ConvertibleTo(Float)
- convert : % -> InputForm
- from ConvertibleTo(InputForm)
- definingPolynomial : % -> %
- from ExpressionSpace2(Kernel(%))
- denom : % -> SparseMultivariatePolynomial(Integer, Kernel(%))
denom(f)
returns the denominator of f
viewed as a polynomial in the kernels over Z
.
- differentiate : % -> %
- from DifferentialRing
- differentiate : (%, NonNegativeInteger) -> %
- from DifferentialRing
- distribute : % -> %
- from ExpressionSpace2(Kernel(%))
- distribute : (%, %) -> %
- from ExpressionSpace2(Kernel(%))
- divide : (%, %) -> Record(quotient : %, remainder : %)
- from EuclideanDomain
- elt : (BasicOperator, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- euclideanSize : % -> NonNegativeInteger
- from EuclideanDomain
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, BasicOperator, Mapping(%, %)) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, BasicOperator, Mapping(%, List(%))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, Kernel(%), %) -> %
- from InnerEvalable(Kernel(%), %)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(BasicOperator), List(Mapping(%, %))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(BasicOperator), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- eval : (%, List(Kernel(%)), List(%)) -> %
- from InnerEvalable(Kernel(%), %)
- eval : (%, List(Symbol), List(Mapping(%, %))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Symbol), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Symbol, Mapping(%, %)) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Symbol, Mapping(%, List(%))) -> %
- from ExpressionSpace2(Kernel(%))
- even? : % -> Boolean
- from ExpressionSpace2(Kernel(%))
- expressIdealMember : (List(%), %) -> Union(List(%), "failed")
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed")
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %)
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed")
- from EuclideanDomain
- factor : % -> Factored(%)
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
- from PolynomialFactorizationExplicit
- freeOf? : (%, %) -> Boolean
- from ExpressionSpace2(Kernel(%))
- freeOf? : (%, Symbol) -> Boolean
- from ExpressionSpace2(Kernel(%))
- gcd : (%, %) -> %
- from GcdDomain
- gcd : List(%) -> %
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%)
- from PolynomialFactorizationExplicit
- height : % -> NonNegativeInteger
- from ExpressionSpace2(Kernel(%))
- inv : % -> %
- from DivisionRing
- is? : (%, BasicOperator) -> Boolean
- from ExpressionSpace2(Kernel(%))
- is? : (%, Symbol) -> Boolean
- from ExpressionSpace2(Kernel(%))
- kernel : (BasicOperator, %) -> %
- from ExpressionSpace2(Kernel(%))
- kernel : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- kernels : % -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- kernels : List(%) -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> %
- from GcdDomain
- lcm : List(%) -> %
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %)
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- mainKernel : % -> Union(Kernel(%), "failed")
- from ExpressionSpace2(Kernel(%))
- map : (Mapping(%, %), Kernel(%)) -> %
- from ExpressionSpace2(Kernel(%))
- minPoly : Kernel(%) -> SparseUnivariatePolynomial(%)
- from ExpressionSpace2(Kernel(%))
- multiEuclidean : (List(%), %) -> Union(List(%), "failed")
- from EuclideanDomain
- norm : (%, Kernel(%)) -> %
norm(f, k)
computes the norm of the algebraic number f
with respect to the extension generated by kernel k
- norm : (%, List(Kernel(%))) -> %
norm(f, l)
computes the norm of the algebraic number f
with respect to the extension generated by kernels l
- norm : (SparseUnivariatePolynomial(%), Kernel(%)) -> SparseUnivariatePolynomial(%)
norm(p, k)
computes the norm of the polynomial p
with respect to the extension generated by kernel k
- norm : (SparseUnivariatePolynomial(%), List(Kernel(%))) -> SparseUnivariatePolynomial(%)
norm(p, l)
computes the norm of the polynomial p
with respect to the extension generated by kernels l
- nthRoot : (%, Integer) -> %
- from RadicalCategory
- numer : % -> SparseMultivariatePolynomial(Integer, Kernel(%))
numer(f)
returns the numerator of f
viewed as a polynomial in the kernels over Z
.
- odd? : % -> Boolean
- from ExpressionSpace2(Kernel(%))
- one? : % -> Boolean
- from MagmaWithUnit
- operator : BasicOperator -> BasicOperator
- from ExpressionSpace2(Kernel(%))
- operators : % -> List(BasicOperator)
- from ExpressionSpace2(Kernel(%))
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- paren : % -> %
- from ExpressionSpace2(Kernel(%))
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- prime? : % -> Boolean
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %)
- from PrincipalIdealDomain
- quo : (%, %) -> %
- from EuclideanDomain
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduce : % -> %
reduce(f)
simplifies all the unreduced algebraic numbers present in f
by applying their defining relations.
- reducedSystem : Matrix(%) -> Matrix(Fraction(Integer))
- from LinearlyExplicitOver(Fraction(Integer))
- reducedSystem : Matrix(%) -> Matrix(Integer)
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Fraction(Integer)), vec : Vector(Fraction(Integer)))
- from LinearlyExplicitOver(Fraction(Integer))
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer))
- from LinearlyExplicitOver(Integer)
- rem : (%, %) -> %
- from EuclideanDomain
- retract : % -> Fraction(Integer)
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer
- from RetractableTo(Integer)
- retract : % -> Kernel(%)
- from RetractableTo(Kernel(%))
- retractIfCan : % -> Union(Fraction(Integer), "failed")
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed")
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Kernel(%), "failed")
- from RetractableTo(Kernel(%))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rootOf : Polynomial(%) -> %
- from AlgebraicallyClosedField
- rootOf : SparseUnivariatePolynomial(%) -> %
- from AlgebraicallyClosedField
- rootOf : (SparseUnivariatePolynomial(%), Symbol) -> %
- from AlgebraicallyClosedField
- rootsOf : Polynomial(%) -> List(%)
- from AlgebraicallyClosedField
- rootsOf : SparseUnivariatePolynomial(%) -> List(%)
- from AlgebraicallyClosedField
- rootsOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
- from AlgebraicallyClosedField
- sample : () -> %
- from AbelianMonoid
- sizeLess? : (%, %) -> Boolean
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed")
- from PolynomialFactorizationExplicit
- sqrt : % -> %
- from RadicalCategory
- squareFree : % -> Factored(%)
- from UniqueFactorizationDomain
- squareFreePart : % -> %
- from UniqueFactorizationDomain
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%))
- from PolynomialFactorizationExplicit
- subst : (%, Equation(%)) -> %
- from ExpressionSpace2(Kernel(%))
- subst : (%, List(Equation(%))) -> %
- from ExpressionSpace2(Kernel(%))
- subst : (%, List(Kernel(%)), List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tower : % -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- tower : List(%) -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- trueEqual : (%, %) -> Boolean
trueEqual(x, y)
tries to determine if the two numbers are equal
- unit? : % -> Boolean
- from EntireRing
- unitCanonical : % -> %
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %)
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- zeroOf : Polynomial(%) -> %
- from AlgebraicallyClosedField
- zeroOf : SparseUnivariatePolynomial(%) -> %
- from AlgebraicallyClosedField
- zeroOf : (SparseUnivariatePolynomial(%), Symbol) -> %
- from AlgebraicallyClosedField
- zerosOf : Polynomial(%) -> List(%)
- from AlgebraicallyClosedField
- zerosOf : SparseUnivariatePolynomial(%) -> List(%)
- from AlgebraicallyClosedField
- zerosOf : (SparseUnivariatePolynomial(%), Symbol) -> List(%)
- from AlgebraicallyClosedField
- ~= : (%, %) -> Boolean
- from BasicType
Algebra(Fraction(Integer))
Module(Fraction(Integer))
ConvertibleTo(Float)
PrincipalIdealDomain
NonAssociativeSemiRing
BiModule(%, %)
ConvertibleTo(InputForm)
Field
canonicalUnitNormal
Rng
CoercibleFrom(Integer)
TwoSidedRecip
SemiRing
EntireRing
NonAssociativeAlgebra(Fraction(Integer))
unitsKnown
ExpressionSpace
RightModule(Integer)
noZeroDivisors
RetractableTo(Fraction(Integer))
Magma
InnerEvalable(%, %)
RightModule(Fraction(Integer))
GcdDomain
IntegralDomain
LeftModule(%)
NonAssociativeRing
UniqueFactorizationDomain
ExpressionSpace2(Kernel(%))
CharacteristicZero
RetractableTo(Kernel(%))
LinearlyExplicitOver(Fraction(Integer))
Algebra(%)
CommutativeRing
DifferentialRing
RadicalCategory
DivisionRing
canonicalsClosed
CancellationAbelianMonoid
EuclideanDomain
Comparable
RetractableTo(Integer)
AlgebraicallyClosedField
CommutativeStar
AbelianMonoid
MagmaWithUnit
NonAssociativeSemiRng
RightModule(%)
SemiGroup
RealConstant
CoercibleFrom(Kernel(%))
ConvertibleTo(DoubleFloat)
Module(%)
CoercibleTo(OutputForm)
LinearlyExplicitOver(Integer)
SemiRng
Monoid
PolynomialFactorizationExplicit
LeftOreRing
NonAssociativeAlgebra(%)
ConvertibleTo(Complex(Float))
BasicType
Ring
InnerEvalable(Kernel(%), %)
LeftModule(Fraction(Integer))
AbelianSemiGroup
SetCategory
CoercibleFrom(Fraction(Integer))
NonAssociativeRng
Evalable(%)
BiModule(Fraction(Integer), Fraction(Integer))
AbelianGroup