SparseMultivariatePolynomial(R, VarSet)
multpoly.spad line 80
[edit on github]
This type is the basic representation of sparse recursive multivariate polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative, but the variables are assumed to commute.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has Algebra(Fraction(Integer))
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer) and R has Ring
- from RightModule(Integer)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has Algebra(Fraction(Integer))
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if R has AbelianGroup or % has AbelianGroup
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from AbelianMonoidRing(R, IndexedExponents(VarSet))
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if R has SemiRing
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, VarSet) -> % if R has Ring
- from PartialDifferentialRing(VarSet)
- D : (%, VarSet, NonNegativeInteger) -> % if R has Ring
- from PartialDifferentialRing(VarSet)
- D : (%, List(VarSet)) -> % if R has Ring
- from PartialDifferentialRing(VarSet)
- D : (%, List(VarSet), List(NonNegativeInteger)) -> % if R has Ring
- from PartialDifferentialRing(VarSet)
- ^ : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if R has EntireRing
- from EntireRing
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- binomThmExpt : (%, %, NonNegativeInteger) -> % if % has CommutativeRing
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit or R has CharacteristicNonZero
- from PolynomialFactorizationExplicit
- coefficient : (%, VarSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- coefficient : (%, List(VarSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- coefficient : (%, IndexedExponents(VarSet)) -> R
- from AbelianMonoidRing(R, IndexedExponents(VarSet))
- coefficients : % -> List(R)
- from FreeModuleCategory(R, IndexedExponents(VarSet))
- coerce : % -> % if R has CommutativeRing
- from Algebra(%)
- coerce : R -> %
- from Algebra(R)
- coerce : VarSet -> % if R has SemiRing
- from CoercibleFrom(VarSet)
- coerce : Fraction(Integer) -> % if R has Algebra(Fraction(Integer)) or R has RetractableTo(Fraction(Integer))
- from Algebra(Fraction(Integer))
- coerce : Integer -> % if R has Ring or R has RetractableTo(Integer)
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> % if R has Ring
- from NonAssociativeRng
- conditionP : Matrix(%) -> Union(Vector(%), "failed") if % has CharacteristicNonZero and R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- construct : List(Record(k : IndexedExponents(VarSet), c : R)) -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- constructOrdered : List(Record(k : IndexedExponents(VarSet), c : R)) -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- content : (%, VarSet) -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- content : % -> R if R has GcdDomain
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- convert : % -> InputForm if VarSet has ConvertibleTo(InputForm) and R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if VarSet has ConvertibleTo(Pattern(Float)) and R has ConvertibleTo(Pattern(Float)) and R has Ring
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if VarSet has ConvertibleTo(Pattern(Integer)) and R has ConvertibleTo(Pattern(Integer)) and R has Ring
- from ConvertibleTo(Pattern(Integer))
- degree : % -> IndexedExponents(VarSet)
- from AbelianMonoidRing(R, IndexedExponents(VarSet))
- degree : (%, List(VarSet)) -> List(NonNegativeInteger)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- degree : (%, VarSet) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- differentiate : (%, VarSet) -> % if R has Ring
- from PartialDifferentialRing(VarSet)
- differentiate : (%, VarSet, NonNegativeInteger) -> % if R has Ring
- from PartialDifferentialRing(VarSet)
- differentiate : (%, List(VarSet)) -> % if R has Ring
- from PartialDifferentialRing(VarSet)
- differentiate : (%, List(VarSet), List(NonNegativeInteger)) -> % if R has Ring
- from PartialDifferentialRing(VarSet)
- discriminant : (%, VarSet) -> % if R has CommutativeRing
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- eval : (%, %, %) -> % if R has SemiRing
- from InnerEvalable(%, %)
- eval : (%, VarSet, %) -> %
- from InnerEvalable(VarSet, %)
- eval : (%, VarSet, R) -> %
- from InnerEvalable(VarSet, R)
- eval : (%, Equation(%)) -> % if R has SemiRing
- from Evalable(%)
- eval : (%, List(%), List(%)) -> % if R has SemiRing
- from InnerEvalable(%, %)
- eval : (%, List(VarSet), List(%)) -> %
- from InnerEvalable(VarSet, %)
- eval : (%, List(VarSet), List(R)) -> %
- from InnerEvalable(VarSet, R)
- eval : (%, List(Equation(%))) -> % if R has SemiRing
- from Evalable(%)
- exquo : (%, %) -> Union(%, "failed") if R has EntireRing
- from EntireRing
- exquo : (%, R) -> Union(%, "failed") if R has EntireRing
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- factor : % -> Factored(%) if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- fmecg : (%, IndexedExponents(VarSet), R, %) -> % if R has Ring
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- gcd : (%, %) -> % if R has GcdDomain
- from GcdDomain
- gcd : List(%) -> % if R has GcdDomain
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has GcdDomain
- from PolynomialFactorizationExplicit
- ground : % -> R
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- ground? : % -> Boolean
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- hash : % -> SingleInteger if VarSet has Hashable and R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if VarSet has Hashable and R has Hashable
- from Hashable
- isExpt : % -> Union(Record(var : VarSet, exponent : NonNegativeInteger), "failed") if R has SemiRing
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- isPlus : % -> Union(List(%), "failed")
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- isTimes : % -> Union(List(%), "failed") if R has SemiRing
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has GcdDomain
- from GcdDomain
- lcm : List(%) -> % if R has GcdDomain
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has GcdDomain
- from LeftOreRing
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- leadingMonomial : % -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- leadingSupport : % -> IndexedExponents(VarSet)
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- leadingTerm : % -> Record(k : IndexedExponents(VarSet), c : R)
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- leftPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- linearExtend : (Mapping(R, IndexedExponents(VarSet)), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, IndexedExponents(VarSet))
- listOfTerms : % -> List(Record(k : IndexedExponents(VarSet), c : R))
- from IndexedDirectProductCategory(R, IndexedExponents(VarSet))
- mainVariable : % -> Union(VarSet, "failed")
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- mapExponents : (Mapping(IndexedExponents(VarSet), IndexedExponents(VarSet)), %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- minimumDegree : % -> IndexedExponents(VarSet)
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- minimumDegree : (%, List(VarSet)) -> List(NonNegativeInteger)
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- minimumDegree : (%, VarSet) -> NonNegativeInteger
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monicDivide : (%, %, VarSet) -> Record(quotient : %, remainder : %) if R has Ring
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monomial : (%, VarSet, NonNegativeInteger) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monomial : (%, List(VarSet), List(NonNegativeInteger)) -> %
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- monomial : (R, IndexedExponents(VarSet)) -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- monomial? : % -> Boolean
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- monomials : % -> List(%)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- multivariate : (SparseUnivariatePolynomial(%), VarSet) -> %
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- multivariate : (SparseUnivariatePolynomial(R), VarSet) -> %
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, IndexedExponents(VarSet))
- one? : % -> Boolean if R has SemiRing
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if VarSet has PatternMatchable(Float) and R has PatternMatchable(Float) and R has Ring
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if VarSet has PatternMatchable(Integer) and R has PatternMatchable(Integer) and R has Ring
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing or R has Algebra(Fraction(Integer))
- from NonAssociativeAlgebra(%)
- pomopo! : (%, R, IndexedExponents(VarSet), %) -> %
- from FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
- prime? : % -> Boolean if R has PolynomialFactorizationExplicit
- from UniqueFactorizationDomain
- primitiveMonomials : % -> List(%) if R has SemiRing
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- primitivePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- primitivePart : (%, VarSet) -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- recip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R)) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reductum : % -> %
- from IndexedProductCategory(R, IndexedExponents(VarSet))
- resultant : (%, %, VarSet) -> % if R has CommutativeRing
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> VarSet if R has SemiRing
- from RetractableTo(VarSet)
- retract : % -> Fraction(Integer) if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(VarSet, "failed") if R has SemiRing
- from RetractableTo(VarSet)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- rightPower : (%, NonNegativeInteger) -> % if R has SemiRing
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiRing
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)), "failed") if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- squareFree : % -> Factored(%) if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- squareFreePart : % -> % if R has GcdDomain
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) if R has PolynomialFactorizationExplicit
- from PolynomialFactorizationExplicit
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(IndexedExponents(VarSet))
- from FreeModuleCategory(R, IndexedExponents(VarSet))
- totalDegree : % -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- totalDegree : (%, List(VarSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- totalDegreeSorted : (%, List(VarSet)) -> NonNegativeInteger
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- unit? : % -> Boolean if R has EntireRing
- from EntireRing
- unitCanonical : % -> % if R has EntireRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has EntireRing
- from EntireRing
- univariate : (%, VarSet) -> SparseUnivariatePolynomial(%)
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- univariate : % -> SparseUnivariatePolynomial(R)
- from PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- variables : % -> List(VarSet)
- from MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Module(Fraction(Integer))
NonAssociativeSemiRing
LeftModule(R)
BiModule(%, %)
ConvertibleTo(InputForm)
canonicalUnitNormal
Rng
RetractableTo(VarSet)
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
EntireRing
InnerEvalable(VarSet, R)
NonAssociativeAlgebra(Fraction(Integer))
FreeModuleCategory(R, IndexedExponents(VarSet))
unitsKnown
FullyLinearlyExplicitOver(R)
PatternMatchable(Float)
MaybeSkewPolynomialCategory(R, IndexedExponents(VarSet), VarSet)
IndexedProductCategory(R, IndexedExponents(VarSet))
AbelianSemiGroup
noZeroDivisors
UniqueFactorizationDomain
InnerEvalable(%, %)
SemiGroup
Magma
GcdDomain
IntegralDomain
LeftModule(%)
NonAssociativeRing
CharacteristicZero
Module(R)
Algebra(%)
BiModule(R, R)
RightModule(Fraction(Integer))
Algebra(R)
LinearlyExplicitOver(R)
RightModule(R)
NonAssociativeRng
InnerEvalable(VarSet, %)
CommutativeRing
LeftOreRing
CancellationAbelianMonoid
RetractableTo(Integer)
SetCategory
CoercibleFrom(VarSet)
AbelianMonoidRing(R, IndexedExponents(VarSet))
CommutativeStar
VariablesCommuteWithCoefficients
AbelianMonoid
MagmaWithUnit
Comparable
FiniteAbelianMonoidRing(R, IndexedExponents(VarSet))
RightModule(%)
AbelianProductCategory(R)
Hashable
PartialDifferentialRing(VarSet)
Evalable(%)
PolynomialCategory(R, IndexedExponents(VarSet), VarSet)
LinearlyExplicitOver(Integer)
CoercibleTo(OutputForm)
SemiRng
ConvertibleTo(Pattern(Float))
Monoid
PolynomialFactorizationExplicit
NonAssociativeAlgebra(R)
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
BasicType
Ring
RightModule(Integer)
IndexedDirectProductCategory(R, IndexedExponents(VarSet))
Module(%)
ConvertibleTo(Pattern(Integer))
CoercibleFrom(Fraction(Integer))
LeftModule(Fraction(Integer))
NonAssociativeSemiRng
CoercibleFrom(R)
BiModule(Fraction(Integer), Fraction(Integer))
RetractableTo(Fraction(Integer))
RetractableTo(R)
PatternMatchable(Integer)
AbelianGroup