FunctionSpace2(R, K)

fspace.spad line 389 [edit on github]

A space of formal functions with arguments in an arbitrary ordered set.

* : (%, %) -> % if R has SemiGroup
from Magma
* : (%, R) -> % if R has Ring
from RightModule(R)
* : (%, Fraction(Integer)) -> % if R has IntegralDomain
from RightModule(Fraction(Integer))
* : (%, Integer) -> % if R has LinearlyExplicitOver(Integer) and R has Ring
from RightModule(Integer)
* : (R, %) -> % if R has CommutativeRing
from LeftModule(R)
* : (Fraction(Integer), %) -> % if R has IntegralDomain
from LeftModule(Fraction(Integer))
* : (Integer, %) -> % if R has AbelianGroup
from AbelianGroup
* : (NonNegativeInteger, %) -> % if R has AbelianSemiGroup
from AbelianMonoid
* : (PositiveInteger, %) -> % if R has AbelianSemiGroup
from AbelianSemiGroup
+ : (%, %) -> % if R has AbelianSemiGroup
from AbelianSemiGroup
- : % -> % if R has AbelianGroup
from AbelianGroup
- : (%, %) -> % if R has AbelianGroup
from AbelianGroup
/ : (%, %) -> % if R has IntegralDomain or R has Group
from Group
/ : (SparseMultivariatePolynomial(R, K), SparseMultivariatePolynomial(R, K)) -> % if R has IntegralDomain

p1/p2 returns the quotient of p1 and p2 as an element of %.

0 : () -> % if R has AbelianSemiGroup
from AbelianMonoid
1 : () -> % if R has SemiGroup
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
D : (%, List(Symbol)) -> % if R has Ring
from PartialDifferentialRing(Symbol)
D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has Ring
from PartialDifferentialRing(Symbol)
D : (%, Symbol) -> % if R has Ring
from PartialDifferentialRing(Symbol)
D : (%, Symbol, NonNegativeInteger) -> % if R has Ring
from PartialDifferentialRing(Symbol)
^ : (%, Integer) -> % if R has IntegralDomain or R has Group
from Group
^ : (%, NonNegativeInteger) -> % if R has SemiGroup
from MagmaWithUnit
^ : (%, PositiveInteger) -> % if R has SemiGroup
from Magma
algtower : % -> List(K) if R has IntegralDomain

algtower(f) is algtower([f])

algtower : List(%) -> List(K) if R has IntegralDomain

algtower([f1, ..., fn]) returns list of kernels [ak1, ..., akl] such that each toplevel algebraic kernel in one of f1, ..., fn or in arguments of ak1, ..., akl is one of ak1, ..., akl.

annihilate? : (%, %) -> Boolean if R has Ring
from Rng
antiCommutator : (%, %) -> % if R has Ring
from NonAssociativeSemiRng
applyQuote : (Symbol, %) -> %

applyQuote(foo, x) returns 'foo(x).

applyQuote : (Symbol, %, %) -> %

applyQuote(foo, x, y) returns 'foo(x, y).

applyQuote : (Symbol, %, %, %) -> %

applyQuote(foo, x, y, z) returns 'foo(x, y, z).

applyQuote : (Symbol, %, %, %, %) -> %

applyQuote(foo, x, y, z, t) returns 'foo(x, y, z, t).

applyQuote : (Symbol, List(%)) -> %

applyQuote(foo, [x1, ..., xn]) returns 'foo(x1, ..., xn).

associates? : (%, %) -> Boolean if R has IntegralDomain
from EntireRing
associator : (%, %, %) -> % if R has Ring
from NonAssociativeRng
belong? : BasicOperator -> Boolean
from ExpressionSpace2(K)
box : % -> %
from ExpressionSpace2(K)
characteristic : () -> NonNegativeInteger if R has Ring
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
from CharacteristicNonZero
coerce : % -> % if R has IntegralDomain
from Algebra(%)
coerce : K -> %
from CoercibleFrom(K)
coerce : R -> %
from CoercibleFrom(R)
coerce : Fraction(R) -> % if R has IntegralDomain

coerce(q) returns q as an element of %.

coerce : Fraction(Integer) -> % if R has IntegralDomain or R has RetractableTo(Fraction(Integer))
from CoercibleFrom(Fraction(Integer))
coerce : Fraction(Polynomial(R)) -> % if R has IntegralDomain
from CoercibleFrom(Fraction(Polynomial(R)))
coerce : Fraction(Polynomial(Fraction(R))) -> % if R has IntegralDomain

coerce(f) returns f as an element of %.

coerce : Integer -> % if R has Ring or R has RetractableTo(Integer)
from CoercibleFrom(Integer)
coerce : Polynomial(R) -> % if R has Ring
from CoercibleFrom(Polynomial(R))
coerce : Polynomial(Fraction(R)) -> % if R has IntegralDomain

coerce(p) returns p as an element of %.

coerce : SparseMultivariatePolynomial(R, K) -> % if R has Ring

coerce(p) returns p as an element of %.

coerce : Symbol -> %
from CoercibleFrom(Symbol)
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> % if R has Ring or R has Group
from NonAssociativeRng
conjugate : (%, %) -> % if R has Group
from Group
convert : Factored(%) -> % if R has IntegralDomain

convert(f1^e1 ... fm^em) returns (f1)^e1 ... (fm)^em as an element of %, using formal kernels created using a paren.

convert : % -> InputForm if R has ConvertibleTo(InputForm)
from ConvertibleTo(InputForm)
convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float))
from ConvertibleTo(Pattern(Float))
convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer))
from ConvertibleTo(Pattern(Integer))
definingPolynomial : % -> % if % has Ring
from ExpressionSpace2(K)
denom : % -> SparseMultivariatePolynomial(R, K) if R has IntegralDomain

denom(f) returns the denominator of f viewed as a polynomial in the kernels over R.

denominator : % -> % if R has IntegralDomain

denominator(f) returns the denominator of f converted to %.

differentiate : (%, List(Symbol)) -> % if R has Ring
from PartialDifferentialRing(Symbol)
differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has Ring
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol) -> % if R has Ring
from PartialDifferentialRing(Symbol)
differentiate : (%, Symbol, NonNegativeInteger) -> % if R has Ring
from PartialDifferentialRing(Symbol)
distribute : % -> %
from ExpressionSpace2(K)
distribute : (%, %) -> %
from ExpressionSpace2(K)
divide : (%, %) -> Record(quotient : %, remainder : %) if R has IntegralDomain
from EuclideanDomain
elt : (BasicOperator, %) -> %
from ExpressionSpace2(K)
elt : (BasicOperator, %, %) -> %
from ExpressionSpace2(K)
elt : (BasicOperator, %, %, %) -> %
from ExpressionSpace2(K)
elt : (BasicOperator, %, %, %, %) -> %
from ExpressionSpace2(K)
elt : (BasicOperator, %, %, %, %, %) -> %
from ExpressionSpace2(K)
elt : (BasicOperator, %, %, %, %, %, %) -> %
from ExpressionSpace2(K)
elt : (BasicOperator, %, %, %, %, %, %, %) -> %
from ExpressionSpace2(K)
elt : (BasicOperator, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2(K)
elt : (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
from ExpressionSpace2(K)
elt : (BasicOperator, List(%)) -> %
from ExpressionSpace2(K)
euclideanSize : % -> NonNegativeInteger if R has IntegralDomain
from EuclideanDomain
eval : (%, %, %) -> %
from InnerEvalable(%, %)
eval : (%, K, %) -> %
from InnerEvalable(K, %)
eval : (%, BasicOperator, %, Symbol) -> % if R has ConvertibleTo(InputForm)

eval(x, s, f, y) replaces every s(a) in x by f(y) with y replaced by a for any a.

eval : (%, BasicOperator, Mapping(%, %)) -> %
from ExpressionSpace2(K)
eval : (%, BasicOperator, Mapping(%, List(%))) -> %
from ExpressionSpace2(K)
eval : (%, Equation(%)) -> %
from Evalable(%)
eval : (%, List(%), List(%)) -> %
from InnerEvalable(%, %)
eval : (%, List(K), List(%)) -> %
from InnerEvalable(K, %)
eval : (%, List(BasicOperator), List(%), Symbol) -> % if R has ConvertibleTo(InputForm)

eval(x, [s1, ..., sm], [f1, ..., fm], y) replaces every si(a) in x by fi(y) with y replaced by a for any a.

eval : (%, List(BasicOperator), List(Mapping(%, %))) -> %
from ExpressionSpace2(K)
eval : (%, List(BasicOperator), List(Mapping(%, List(%)))) -> %
from ExpressionSpace2(K)
eval : (%, List(Equation(%))) -> %
from Evalable(%)
eval : (%, List(Symbol), List(Mapping(%, %))) -> %
from ExpressionSpace2(K)
eval : (%, List(Symbol), List(Mapping(%, List(%)))) -> %
from ExpressionSpace2(K)
eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, %))) -> % if R has Ring

eval(x, [s1, ..., sm], [n1, ..., nm], [f1, ..., fm]) replaces every si(a)^ni in x by fi(a) for any a.

eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, List(%)))) -> % if R has Ring

eval(x, [s1, ..., sm], [n1, ..., nm], [f1, ..., fm]) replaces every si(a1, ..., an)^ni in x by fi(a1, ..., an) for any a1, ..., am.

eval : (%, Symbol, Mapping(%, %)) -> %
from ExpressionSpace2(K)
eval : (%, Symbol, Mapping(%, List(%))) -> %
from ExpressionSpace2(K)
eval : (%, Symbol, NonNegativeInteger, Mapping(%, %)) -> % if R has Ring

eval(x, s, n, f) replaces every s(a)^n in x by f(a) for any a.

eval : (%, Symbol, NonNegativeInteger, Mapping(%, List(%))) -> % if R has Ring

eval(x, s, n, f) replaces every s(a1, ..., am)^n in x by f(a1, ..., am) for any a1, ..., am.

even? : % -> Boolean if % has RetractableTo(Integer)
from ExpressionSpace2(K)
expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has IntegralDomain
from PrincipalIdealDomain
exquo : (%, %) -> Union(%, "failed") if R has IntegralDomain
from EntireRing
extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has IntegralDomain
from EuclideanDomain
extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has IntegralDomain
from EuclideanDomain
factor : % -> Factored(%) if R has IntegralDomain
from UniqueFactorizationDomain
freeOf? : (%, %) -> Boolean
from ExpressionSpace2(K)
freeOf? : (%, Symbol) -> Boolean
from ExpressionSpace2(K)
gcd : (%, %) -> % if R has IntegralDomain
from GcdDomain
gcd : List(%) -> % if R has IntegralDomain
from GcdDomain
gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has IntegralDomain
from GcdDomain
ground : % -> R

ground(f) returns f as an element of R. An error occurs if f is not an element of R.

ground? : % -> Boolean

ground?(f) tests if f is an element of R.

height : % -> NonNegativeInteger
from ExpressionSpace2(K)
inv : % -> % if R has IntegralDomain or R has Group
from Group
is? : (%, BasicOperator) -> Boolean
from ExpressionSpace2(K)
is? : (%, Symbol) -> Boolean
from ExpressionSpace2(K)
isExpt : % -> Union(Record(var : K, exponent : Integer), "failed") if R has SemiGroup

isExpt(p) returns [x, n] if p = x^n and n ~= 0.

isExpt : (%, BasicOperator) -> Union(Record(var : K, exponent : Integer), "failed") if R has Ring

isExpt(p, op) returns [x, n] if p = x^n and n ~= 0 and x = op(a).

isExpt : (%, Symbol) -> Union(Record(var : K, exponent : Integer), "failed") if R has Ring

isExpt(p, f) returns [x, n] if p = x^n and n ~= 0 and x = f(a).

isMult : % -> Union(Record(coef : Integer, var : K), "failed") if R has AbelianSemiGroup

isMult(p) returns [n, x] if p = n * x and n ~= 0.

isPlus : % -> Union(List(%), "failed") if R has AbelianSemiGroup

isPlus(p) returns [m1, ..., mn] if p = m1 +...+ mn and n > 1.

isPower : % -> Union(Record(val : %, exponent : Integer), "failed") if R has Ring

isPower(p) returns [x, n] if p = x^n and n ~= 0.

isTimes : % -> Union(List(%), "failed") if R has SemiGroup

isTimes(p) returns [a1, ..., an] if p = a1*...*an and n > 1.

kernel : (BasicOperator, %) -> %
from ExpressionSpace2(K)
kernel : (BasicOperator, List(%)) -> %
from ExpressionSpace2(K)
kernels : % -> List(K)
from ExpressionSpace2(K)
kernels : List(%) -> List(K)
from ExpressionSpace2(K)
latex : % -> String
from SetCategory
lcm : (%, %) -> % if R has IntegralDomain
from GcdDomain
lcm : List(%) -> % if R has IntegralDomain
from GcdDomain
lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has IntegralDomain
from LeftOreRing
leftPower : (%, NonNegativeInteger) -> % if R has SemiGroup
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> % if R has SemiGroup
from Magma
leftRecip : % -> Union(%, "failed") if R has SemiGroup
from MagmaWithUnit
mainKernel : % -> Union(K, "failed")
from ExpressionSpace2(K)
map : (Mapping(%, %), K) -> %
from ExpressionSpace2(K)
minPoly : K -> SparseUnivariatePolynomial(%) if % has Ring
from ExpressionSpace2(K)
multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has IntegralDomain
from EuclideanDomain
numer : % -> SparseMultivariatePolynomial(R, K) if R has Ring

numer(f) returns the numerator of f viewed as a polynomial in the kernels over R if R is an integral domain. If not, then numer(f) = f viewed as a polynomial in the kernels over R.

numerator : % -> % if R has Ring

numerator(f) returns the numerator of f converted to %.

odd? : % -> Boolean if % has RetractableTo(Integer)
from ExpressionSpace2(K)
one? : % -> Boolean if R has SemiGroup
from MagmaWithUnit
operator : BasicOperator -> BasicOperator
from ExpressionSpace2(K)
operators : % -> List(BasicOperator)
from ExpressionSpace2(K)
opposite? : (%, %) -> Boolean if R has AbelianSemiGroup
from AbelianMonoid
paren : % -> %
from ExpressionSpace2(K)
patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable(Float)
from PatternMatchable(Float)
patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable(Integer)
from PatternMatchable(Integer)
plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra(R)
prime? : % -> Boolean if R has IntegralDomain
from UniqueFactorizationDomain
principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has IntegralDomain
from PrincipalIdealDomain
quo : (%, %) -> % if R has IntegralDomain
from EuclideanDomain
recip : % -> Union(%, "failed") if R has SemiGroup
from MagmaWithUnit
reducedSystem : Matrix(%) -> Matrix(R) if R has Ring
from LinearlyExplicitOver(R)
reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer) and R has Ring
from LinearlyExplicitOver(Integer)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R)) if R has Ring
from LinearlyExplicitOver(R)
reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer) and R has Ring
from LinearlyExplicitOver(Integer)
rem : (%, %) -> % if R has IntegralDomain
from EuclideanDomain
retract : % -> K
from RetractableTo(K)
retract : % -> R
from RetractableTo(R)
retract : % -> Fraction(Integer) if R has RetractableTo(Integer) and R has IntegralDomain or R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retract : % -> Fraction(Polynomial(R)) if R has IntegralDomain
from RetractableTo(Fraction(Polynomial(R)))
retract : % -> Integer if R has RetractableTo(Integer)
from RetractableTo(Integer)
retract : % -> Polynomial(R) if R has Ring
from RetractableTo(Polynomial(R))
retract : % -> Symbol
from RetractableTo(Symbol)
retractIfCan : % -> Union(K, "failed")
from RetractableTo(K)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Integer) and R has IntegralDomain or R has RetractableTo(Fraction(Integer))
from RetractableTo(Fraction(Integer))
retractIfCan : % -> Union(Fraction(Polynomial(R)), "failed") if R has IntegralDomain
from RetractableTo(Fraction(Polynomial(R)))
retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
from RetractableTo(Integer)
retractIfCan : % -> Union(Polynomial(R), "failed") if R has Ring
from RetractableTo(Polynomial(R))
retractIfCan : % -> Union(Symbol, "failed")
from RetractableTo(Symbol)
rightPower : (%, NonNegativeInteger) -> % if R has SemiGroup
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> % if R has SemiGroup
from Magma
rightRecip : % -> Union(%, "failed") if R has SemiGroup
from MagmaWithUnit
sample : () -> % if R has SemiGroup or R has AbelianSemiGroup
from AbelianMonoid
sizeLess? : (%, %) -> Boolean if R has IntegralDomain
from EuclideanDomain
smaller? : (%, %) -> Boolean
from Comparable
squareFree : % -> Factored(%) if R has IntegralDomain
from UniqueFactorizationDomain
squareFreePart : % -> % if R has IntegralDomain
from UniqueFactorizationDomain
subst : (%, Equation(%)) -> %
from ExpressionSpace2(K)
subst : (%, List(K), List(%)) -> %
from ExpressionSpace2(K)
subst : (%, List(Equation(%))) -> %
from ExpressionSpace2(K)
subtractIfCan : (%, %) -> Union(%, "failed") if R has AbelianGroup
from CancellationAbelianMonoid
tower : % -> List(K)
from ExpressionSpace2(K)
tower : List(%) -> List(K)
from ExpressionSpace2(K)
unit? : % -> Boolean if R has IntegralDomain
from EntireRing
unitCanonical : % -> % if R has IntegralDomain
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has IntegralDomain
from EntireRing
univariate : (%, K) -> Fraction(SparseUnivariatePolynomial(%)) if R has IntegralDomain

univariate(f, k) returns f viewed as a univariate fraction in k.

variables : % -> List(Symbol)

variables(f) returns the list of all the variables of f.

variables : List(%) -> List(Symbol)

variables([f1, ..., fn]) returns the list of all the variables of f1, ..., fn.

zero? : % -> Boolean if R has AbelianSemiGroup
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Module(Fraction(Integer))

PrincipalIdealDomain

NonAssociativeSemiRing

RetractableTo(R)

LeftModule(R)

BiModule(%, %)

ConvertibleTo(InputForm)

NonAssociativeRng

Field

canonicalUnitNormal

CoercibleFrom(Integer)

TwoSidedRecip

FullyRetractableTo(R)

SemiRing

NonAssociativeAlgebra(Fraction(Integer))

EuclideanDomain

unitsKnown

FullyLinearlyExplicitOver(R)

Rng

CharacteristicNonZero

RetractableTo(Fraction(Polynomial(R)))

CoercibleFrom(R)

InnerEvalable(%, %)

SemiGroup

RightModule(Fraction(Integer))

Magma

RightModule(R)

RetractableTo(Symbol)

IntegralDomain

LeftModule(%)

ExpressionSpace2(K)

NonAssociativeRing

GcdDomain

PartialDifferentialRing(Symbol)

CharacteristicZero

Group

Algebra(%)

UniqueFactorizationDomain

InnerEvalable(K, %)

CoercibleFrom(K)

Module(R)

CoercibleFrom(Fraction(Polynomial(R)))

BiModule(R, R)

DivisionRing

Algebra(R)

canonicalsClosed

LinearlyExplicitOver(R)

PatternMatchable(Float)

CancellationAbelianMonoid

Comparable

RetractableTo(Integer)

CommutativeStar

AbelianMonoid

MagmaWithUnit

CoercibleFrom(Symbol)

RightModule(%)

CommutativeRing

CoercibleFrom(Polynomial(R))

RetractableTo(K)

Module(%)

CoercibleTo(OutputForm)

LinearlyExplicitOver(Integer)

LeftOreRing

ConvertibleTo(Pattern(Integer))

SemiRng

Patternable(R)

Monoid

NonAssociativeAlgebra(R)

NonAssociativeAlgebra(%)

Algebra(Fraction(Integer))

ConvertibleTo(Pattern(Float))

BasicType

RetractableTo(Polynomial(R))

Ring

RightModule(Integer)

LeftModule(Fraction(Integer))

AbelianSemiGroup

SetCategory

noZeroDivisors

EntireRing

CoercibleFrom(Fraction(Integer))

NonAssociativeSemiRng

Evalable(%)

BiModule(Fraction(Integer), Fraction(Integer))

FullyPatternMatchable(R)

RetractableTo(Fraction(Integer))

AbelianGroup

PatternMatchable(Integer)