FunctionSpace2(R, K)
fspace.spad line 389
[edit on github]
A space of formal functions with arguments in an arbitrary ordered set.
- * : (%, %) -> % if R has SemiGroup
- from Magma
- * : (%, R) -> % if R has Ring
- from RightModule(R)
- * : (%, Fraction(Integer)) -> % if R has IntegralDomain
- from RightModule(Fraction(Integer))
- * : (%, Integer) -> % if R has LinearlyExplicitOver(Integer) and R has Ring
- from RightModule(Integer)
- * : (R, %) -> % if R has CommutativeRing
- from LeftModule(R)
- * : (Fraction(Integer), %) -> % if R has IntegralDomain
- from LeftModule(Fraction(Integer))
- * : (Integer, %) -> % if R has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> % if R has AbelianSemiGroup
- from AbelianMonoid
- * : (PositiveInteger, %) -> % if R has AbelianSemiGroup
- from AbelianSemiGroup
- + : (%, %) -> % if R has AbelianSemiGroup
- from AbelianSemiGroup
- - : % -> % if R has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if R has AbelianGroup
- from AbelianGroup
- / : (%, %) -> % if R has IntegralDomain or R has Group
- from Group
- / : (SparseMultivariatePolynomial(R, K), SparseMultivariatePolynomial(R, K)) -> % if R has IntegralDomain
p1/p2 returns the quotient of p1 and p2 as an element of %.
- 0 : () -> % if R has AbelianSemiGroup
- from AbelianMonoid
- 1 : () -> % if R has SemiGroup
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, List(Symbol)) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- ^ : (%, Integer) -> % if R has IntegralDomain or R has Group
- from Group
- ^ : (%, NonNegativeInteger) -> % if R has SemiGroup
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> % if R has SemiGroup
- from Magma
- algtower : % -> List(K) if R has IntegralDomain
algtower(f) is algtower([f])
- algtower : List(%) -> List(K) if R has IntegralDomain
algtower([f1, ..., fn]) returns list of kernels [ak1, ..., akl] such that each toplevel algebraic kernel in one of f1, ..., fn or in arguments of ak1, ..., akl is one of ak1, ..., akl.
- annihilate? : (%, %) -> Boolean if R has Ring
- from Rng
- antiCommutator : (%, %) -> % if R has Ring
- from NonAssociativeSemiRng
- applyQuote : (Symbol, %) -> %
applyQuote(foo, x) returns 'foo(x).
- applyQuote : (Symbol, %, %) -> %
applyQuote(foo, x, y) returns 'foo(x, y).
- applyQuote : (Symbol, %, %, %) -> %
applyQuote(foo, x, y, z) returns 'foo(x, y, z).
- applyQuote : (Symbol, %, %, %, %) -> %
applyQuote(foo, x, y, z, t) returns 'foo(x, y, z, t).
- applyQuote : (Symbol, List(%)) -> %
applyQuote(foo, [x1, ..., xn]) returns 'foo(x1, ..., xn).
- associates? : (%, %) -> Boolean if R has IntegralDomain
- from EntireRing
- associator : (%, %, %) -> % if R has Ring
- from NonAssociativeRng
- belong? : BasicOperator -> Boolean
- from ExpressionSpace2(K)
- box : % -> %
- from ExpressionSpace2(K)
- characteristic : () -> NonNegativeInteger if R has Ring
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : % -> % if R has IntegralDomain
- from Algebra(%)
- coerce : K -> %
- from CoercibleFrom(K)
- coerce : R -> %
- from CoercibleFrom(R)
- coerce : Fraction(R) -> % if R has IntegralDomain
coerce(q) returns q as an element of %.
- coerce : Fraction(Integer) -> % if R has IntegralDomain or R has RetractableTo(Fraction(Integer))
- from CoercibleFrom(Fraction(Integer))
- coerce : Fraction(Polynomial(R)) -> % if R has IntegralDomain
- from CoercibleFrom(Fraction(Polynomial(R)))
- coerce : Fraction(Polynomial(Fraction(R))) -> % if R has IntegralDomain
coerce(f) returns f as an element of %.
- coerce : Integer -> % if R has Ring or R has RetractableTo(Integer)
- from CoercibleFrom(Integer)
- coerce : Polynomial(R) -> % if R has Ring
- from CoercibleFrom(Polynomial(R))
- coerce : Polynomial(Fraction(R)) -> % if R has IntegralDomain
coerce(p) returns p as an element of %.
- coerce : SparseMultivariatePolynomial(R, K) -> % if R has Ring
coerce(p) returns p as an element of %.
- coerce : Symbol -> %
- from CoercibleFrom(Symbol)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> % if R has Ring or R has Group
- from NonAssociativeRng
- conjugate : (%, %) -> % if R has Group
- from Group
- convert : Factored(%) -> % if R has IntegralDomain
convert(f1^e1 ... fm^em) returns (f1)^e1 ... (fm)^em as an element of %, using formal kernels created using a paren.
- convert : % -> InputForm if R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- convert : % -> Pattern(Float) if R has ConvertibleTo(Pattern(Float))
- from ConvertibleTo(Pattern(Float))
- convert : % -> Pattern(Integer) if R has ConvertibleTo(Pattern(Integer))
- from ConvertibleTo(Pattern(Integer))
- definingPolynomial : % -> % if % has Ring
- from ExpressionSpace2(K)
- denom : % -> SparseMultivariatePolynomial(R, K) if R has IntegralDomain
denom(f) returns the denominator of f viewed as a polynomial in the kernels over R.
- denominator : % -> % if R has IntegralDomain
denominator(f) returns the denominator of f converted to %.
- differentiate : (%, List(Symbol)) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> % if R has Ring
- from PartialDifferentialRing(Symbol)
- distribute : % -> %
- from ExpressionSpace2(K)
- distribute : (%, %) -> %
- from ExpressionSpace2(K)
- divide : (%, %) -> Record(quotient : %, remainder : %) if R has IntegralDomain
- from EuclideanDomain
- elt : (BasicOperator, %) -> %
- from ExpressionSpace2(K)
- elt : (BasicOperator, %, %) -> %
- from ExpressionSpace2(K)
- elt : (BasicOperator, %, %, %) -> %
- from ExpressionSpace2(K)
- elt : (BasicOperator, %, %, %, %) -> %
- from ExpressionSpace2(K)
- elt : (BasicOperator, %, %, %, %, %) -> %
- from ExpressionSpace2(K)
- elt : (BasicOperator, %, %, %, %, %, %) -> %
- from ExpressionSpace2(K)
- elt : (BasicOperator, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(K)
- elt : (BasicOperator, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(K)
- elt : (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(K)
- elt : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(K)
- euclideanSize : % -> NonNegativeInteger if R has IntegralDomain
- from EuclideanDomain
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, K, %) -> %
- from InnerEvalable(K, %)
- eval : (%, BasicOperator, %, Symbol) -> % if R has ConvertibleTo(InputForm)
eval(x, s, f, y) replaces every s(a) in x by f(y) with y replaced by a for any a.
- eval : (%, BasicOperator, Mapping(%, %)) -> %
- from ExpressionSpace2(K)
- eval : (%, BasicOperator, Mapping(%, List(%))) -> %
- from ExpressionSpace2(K)
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(K), List(%)) -> %
- from InnerEvalable(K, %)
- eval : (%, List(BasicOperator), List(%), Symbol) -> % if R has ConvertibleTo(InputForm)
eval(x, [s1, ..., sm], [f1, ..., fm], y) replaces every si(a) in x by fi(y) with y replaced by a for any a.
- eval : (%, List(BasicOperator), List(Mapping(%, %))) -> %
- from ExpressionSpace2(K)
- eval : (%, List(BasicOperator), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(K)
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- eval : (%, List(Symbol), List(Mapping(%, %))) -> %
- from ExpressionSpace2(K)
- eval : (%, List(Symbol), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(K)
- eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, %))) -> % if R has Ring
eval(x, [s1, ..., sm], [n1, ..., nm], [f1, ..., fm]) replaces every si(a)^ni in x by fi(a) for any a.
- eval : (%, List(Symbol), List(NonNegativeInteger), List(Mapping(%, List(%)))) -> % if R has Ring
eval(x, [s1, ..., sm], [n1, ..., nm], [f1, ..., fm]) replaces every si(a1, ..., an)^ni in x by fi(a1, ..., an) for any a1, ..., am.
- eval : (%, Symbol, Mapping(%, %)) -> %
- from ExpressionSpace2(K)
- eval : (%, Symbol, Mapping(%, List(%))) -> %
- from ExpressionSpace2(K)
- eval : (%, Symbol, NonNegativeInteger, Mapping(%, %)) -> % if R has Ring
eval(x, s, n, f) replaces every s(a)^n in x by f(a) for any a.
- eval : (%, Symbol, NonNegativeInteger, Mapping(%, List(%))) -> % if R has Ring
eval(x, s, n, f) replaces every s(a1, ..., am)^n in x by f(a1, ..., am) for any a1, ..., am.
- even? : % -> Boolean if % has RetractableTo(Integer)
- from ExpressionSpace2(K)
- expressIdealMember : (List(%), %) -> Union(List(%), "failed") if R has IntegralDomain
- from PrincipalIdealDomain
- exquo : (%, %) -> Union(%, "failed") if R has IntegralDomain
- from EntireRing
- extendedEuclidean : (%, %) -> Record(coef1 : %, coef2 : %, generator : %) if R has IntegralDomain
- from EuclideanDomain
- extendedEuclidean : (%, %, %) -> Union(Record(coef1 : %, coef2 : %), "failed") if R has IntegralDomain
- from EuclideanDomain
- factor : % -> Factored(%) if R has IntegralDomain
- from UniqueFactorizationDomain
- freeOf? : (%, %) -> Boolean
- from ExpressionSpace2(K)
- freeOf? : (%, Symbol) -> Boolean
- from ExpressionSpace2(K)
- gcd : (%, %) -> % if R has IntegralDomain
- from GcdDomain
- gcd : List(%) -> % if R has IntegralDomain
- from GcdDomain
- gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) if R has IntegralDomain
- from GcdDomain
- ground : % -> R
ground(f) returns f as an element of R. An error occurs if f is not an element of R.
- ground? : % -> Boolean
ground?(f) tests if f is an element of R.
- height : % -> NonNegativeInteger
- from ExpressionSpace2(K)
- inv : % -> % if R has IntegralDomain or R has Group
- from Group
- is? : (%, BasicOperator) -> Boolean
- from ExpressionSpace2(K)
- is? : (%, Symbol) -> Boolean
- from ExpressionSpace2(K)
- isExpt : % -> Union(Record(var : K, exponent : Integer), "failed") if R has SemiGroup
isExpt(p) returns [x, n] if p = x^n and n ~= 0.
- isExpt : (%, BasicOperator) -> Union(Record(var : K, exponent : Integer), "failed") if R has Ring
isExpt(p, op) returns [x, n] if p = x^n and n ~= 0 and x = op(a).
- isExpt : (%, Symbol) -> Union(Record(var : K, exponent : Integer), "failed") if R has Ring
isExpt(p, f) returns [x, n] if p = x^n and n ~= 0 and x = f(a).
- isMult : % -> Union(Record(coef : Integer, var : K), "failed") if R has AbelianSemiGroup
isMult(p) returns [n, x] if p = n * x and n ~= 0.
- isPlus : % -> Union(List(%), "failed") if R has AbelianSemiGroup
isPlus(p) returns [m1, ..., mn] if p = m1 +...+ mn and n > 1.
- isPower : % -> Union(Record(val : %, exponent : Integer), "failed") if R has Ring
isPower(p) returns [x, n] if p = x^n and n ~= 0.
- isTimes : % -> Union(List(%), "failed") if R has SemiGroup
isTimes(p) returns [a1, ..., an] if p = a1*...*an and n > 1.
- kernel : (BasicOperator, %) -> %
- from ExpressionSpace2(K)
- kernel : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(K)
- kernels : % -> List(K)
- from ExpressionSpace2(K)
- kernels : List(%) -> List(K)
- from ExpressionSpace2(K)
- latex : % -> String
- from SetCategory
- lcm : (%, %) -> % if R has IntegralDomain
- from GcdDomain
- lcm : List(%) -> % if R has IntegralDomain
- from GcdDomain
- lcmCoef : (%, %) -> Record(llcm_res : %, coeff1 : %, coeff2 : %) if R has IntegralDomain
- from LeftOreRing
- leftPower : (%, NonNegativeInteger) -> % if R has SemiGroup
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> % if R has SemiGroup
- from Magma
- leftRecip : % -> Union(%, "failed") if R has SemiGroup
- from MagmaWithUnit
- mainKernel : % -> Union(K, "failed")
- from ExpressionSpace2(K)
- map : (Mapping(%, %), K) -> %
- from ExpressionSpace2(K)
- minPoly : K -> SparseUnivariatePolynomial(%) if % has Ring
- from ExpressionSpace2(K)
- multiEuclidean : (List(%), %) -> Union(List(%), "failed") if R has IntegralDomain
- from EuclideanDomain
- numer : % -> SparseMultivariatePolynomial(R, K) if R has Ring
numer(f) returns the numerator of f viewed as a polynomial in the kernels over R if R is an integral domain. If not, then numer(f) = f viewed as a polynomial in the kernels over R.
- numerator : % -> % if R has Ring
numerator(f) returns the numerator of f converted to %.
- odd? : % -> Boolean if % has RetractableTo(Integer)
- from ExpressionSpace2(K)
- one? : % -> Boolean if R has SemiGroup
- from MagmaWithUnit
- operator : BasicOperator -> BasicOperator
- from ExpressionSpace2(K)
- operators : % -> List(BasicOperator)
- from ExpressionSpace2(K)
- opposite? : (%, %) -> Boolean if R has AbelianSemiGroup
- from AbelianMonoid
- paren : % -> %
- from ExpressionSpace2(K)
- patternMatch : (%, Pattern(Float), PatternMatchResult(Float, %)) -> PatternMatchResult(Float, %) if R has PatternMatchable(Float)
- from PatternMatchable(Float)
- patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer, %)) -> PatternMatchResult(Integer, %) if R has PatternMatchable(Integer)
- from PatternMatchable(Integer)
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- prime? : % -> Boolean if R has IntegralDomain
- from UniqueFactorizationDomain
- principalIdeal : List(%) -> Record(coef : List(%), generator : %) if R has IntegralDomain
- from PrincipalIdealDomain
- quo : (%, %) -> % if R has IntegralDomain
- from EuclideanDomain
- recip : % -> Union(%, "failed") if R has SemiGroup
- from MagmaWithUnit
- reducedSystem : Matrix(%) -> Matrix(R) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : Matrix(%) -> Matrix(Integer) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(R), vec : Vector(R)) if R has Ring
- from LinearlyExplicitOver(R)
- reducedSystem : (Matrix(%), Vector(%)) -> Record(mat : Matrix(Integer), vec : Vector(Integer)) if R has LinearlyExplicitOver(Integer) and R has Ring
- from LinearlyExplicitOver(Integer)
- rem : (%, %) -> % if R has IntegralDomain
- from EuclideanDomain
- retract : % -> K
- from RetractableTo(K)
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Fraction(Integer) if R has RetractableTo(Integer) and R has IntegralDomain or R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retract : % -> Fraction(Polynomial(R)) if R has IntegralDomain
- from RetractableTo(Fraction(Polynomial(R)))
- retract : % -> Integer if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retract : % -> Polynomial(R) if R has Ring
- from RetractableTo(Polynomial(R))
- retract : % -> Symbol
- from RetractableTo(Symbol)
- retractIfCan : % -> Union(K, "failed")
- from RetractableTo(K)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Fraction(Integer), "failed") if R has RetractableTo(Integer) and R has IntegralDomain or R has RetractableTo(Fraction(Integer))
- from RetractableTo(Fraction(Integer))
- retractIfCan : % -> Union(Fraction(Polynomial(R)), "failed") if R has IntegralDomain
- from RetractableTo(Fraction(Polynomial(R)))
- retractIfCan : % -> Union(Integer, "failed") if R has RetractableTo(Integer)
- from RetractableTo(Integer)
- retractIfCan : % -> Union(Polynomial(R), "failed") if R has Ring
- from RetractableTo(Polynomial(R))
- retractIfCan : % -> Union(Symbol, "failed")
- from RetractableTo(Symbol)
- rightPower : (%, NonNegativeInteger) -> % if R has SemiGroup
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> % if R has SemiGroup
- from Magma
- rightRecip : % -> Union(%, "failed") if R has SemiGroup
- from MagmaWithUnit
- sample : () -> % if R has SemiGroup or R has AbelianSemiGroup
- from AbelianMonoid
- sizeLess? : (%, %) -> Boolean if R has IntegralDomain
- from EuclideanDomain
- smaller? : (%, %) -> Boolean
- from Comparable
- squareFree : % -> Factored(%) if R has IntegralDomain
- from UniqueFactorizationDomain
- squareFreePart : % -> % if R has IntegralDomain
- from UniqueFactorizationDomain
- subst : (%, Equation(%)) -> %
- from ExpressionSpace2(K)
- subst : (%, List(K), List(%)) -> %
- from ExpressionSpace2(K)
- subst : (%, List(Equation(%))) -> %
- from ExpressionSpace2(K)
- subtractIfCan : (%, %) -> Union(%, "failed") if R has AbelianGroup
- from CancellationAbelianMonoid
- tower : % -> List(K)
- from ExpressionSpace2(K)
- tower : List(%) -> List(K)
- from ExpressionSpace2(K)
- unit? : % -> Boolean if R has IntegralDomain
- from EntireRing
- unitCanonical : % -> % if R has IntegralDomain
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if R has IntegralDomain
- from EntireRing
- univariate : (%, K) -> Fraction(SparseUnivariatePolynomial(%)) if R has IntegralDomain
univariate(f, k) returns f viewed as a univariate fraction in k.
- variables : % -> List(Symbol)
variables(f) returns the list of all the variables of f.
- variables : List(%) -> List(Symbol)
variables([f1, ..., fn]) returns the list of all the variables of f1, ..., fn.
- zero? : % -> Boolean if R has AbelianSemiGroup
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Module(Fraction(Integer))
PrincipalIdealDomain
NonAssociativeSemiRing
RetractableTo(R)
LeftModule(R)
BiModule(%, %)
ConvertibleTo(InputForm)
NonAssociativeRng
Field
canonicalUnitNormal
CoercibleFrom(Integer)
TwoSidedRecip
FullyRetractableTo(R)
SemiRing
NonAssociativeAlgebra(Fraction(Integer))
EuclideanDomain
unitsKnown
FullyLinearlyExplicitOver(R)
Rng
CharacteristicNonZero
RetractableTo(Fraction(Polynomial(R)))
CoercibleFrom(R)
InnerEvalable(%, %)
SemiGroup
RightModule(Fraction(Integer))
Magma
RightModule(R)
RetractableTo(Symbol)
IntegralDomain
LeftModule(%)
ExpressionSpace2(K)
NonAssociativeRing
GcdDomain
PartialDifferentialRing(Symbol)
CharacteristicZero
Group
Algebra(%)
UniqueFactorizationDomain
InnerEvalable(K, %)
CoercibleFrom(K)
Module(R)
CoercibleFrom(Fraction(Polynomial(R)))
BiModule(R, R)
DivisionRing
Algebra(R)
canonicalsClosed
LinearlyExplicitOver(R)
PatternMatchable(Float)
CancellationAbelianMonoid
Comparable
RetractableTo(Integer)
CommutativeStar
AbelianMonoid
MagmaWithUnit
CoercibleFrom(Symbol)
RightModule(%)
CommutativeRing
CoercibleFrom(Polynomial(R))
RetractableTo(K)
Module(%)
CoercibleTo(OutputForm)
LinearlyExplicitOver(Integer)
LeftOreRing
ConvertibleTo(Pattern(Integer))
SemiRng
Patternable(R)
Monoid
NonAssociativeAlgebra(R)
NonAssociativeAlgebra(%)
Algebra(Fraction(Integer))
ConvertibleTo(Pattern(Float))
BasicType
RetractableTo(Polynomial(R))
Ring
RightModule(Integer)
LeftModule(Fraction(Integer))
AbelianSemiGroup
SetCategory
noZeroDivisors
EntireRing
CoercibleFrom(Fraction(Integer))
NonAssociativeSemiRng
Evalable(%)
BiModule(Fraction(Integer), Fraction(Integer))
FullyPatternMatchable(R)
RetractableTo(Fraction(Integer))
AbelianGroup
PatternMatchable(Integer)