RectangularMatrix(m, n, R)
matrix.spad line 230
[edit on github]
RectangularMatrix is a matrix domain where the number of rows and the number of columns are parameters of the domain.
- # : % -> NonNegativeInteger
- from Aggregate
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> % if R has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if R has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if R has AbelianGroup
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- antisymmetric? : % -> Boolean
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- any? : (Mapping(Boolean, R), %) -> Boolean
- from HomogeneousAggregate(R)
- coerce : % -> Matrix(R)
coerce(m)
converts a matrix of type RectangularMatrix to a matrix of type Matrix
.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- column : (%, Integer) -> DirectProduct(m, R)
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- columnSpace : % -> List(DirectProduct(m, R)) if R has EuclideanDomain
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- convert : % -> InputForm if R has ConvertibleTo(InputForm)
- from ConvertibleTo(InputForm)
- copy : % -> %
- from Aggregate
- count : (R, %) -> NonNegativeInteger
- from HomogeneousAggregate(R)
- count : (Mapping(Boolean, R), %) -> NonNegativeInteger
- from HomogeneousAggregate(R)
- diagonal? : % -> Boolean
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- elt : (%, Integer, Integer) -> R
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- elt : (%, Integer, Integer, R) -> R
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- empty : () -> %
- from Aggregate
- empty? : % -> Boolean
- from Aggregate
- enumerate : () -> List(%) if R has Finite
- from Finite
- eq? : (%, %) -> Boolean
- from Aggregate
- eval : (%, R, R) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, Equation(R)) -> % if R has Evalable(R)
- from Evalable(R)
- eval : (%, List(R), List(R)) -> % if R has Evalable(R)
- from InnerEvalable(R, R)
- eval : (%, List(Equation(R))) -> % if R has Evalable(R)
- from Evalable(R)
- every? : (Mapping(Boolean, R), %) -> Boolean
- from HomogeneousAggregate(R)
- exquo : (%, R) -> Union(%, "failed") if R has IntegralDomain
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- hash : % -> SingleInteger if R has Finite
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Finite
- from Hashable
- index : PositiveInteger -> % if R has Finite
- from Finite
- latex : % -> String
- from SetCategory
- less? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- listOfLists : % -> List(List(R))
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- map : (Mapping(R, R), %) -> %
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- map : (Mapping(R, R, R), %, %) -> %
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- matrix : List(List(R)) -> %
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- max : % -> R if R has OrderedSet
- from HomogeneousAggregate(R)
- max : (Mapping(Boolean, R, R), %) -> R
- from HomogeneousAggregate(R)
- maxColIndex : % -> Integer
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- maxRowIndex : % -> Integer
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- member? : (R, %) -> Boolean
- from HomogeneousAggregate(R)
- members : % -> List(R)
- from HomogeneousAggregate(R)
- min : % -> R if R has OrderedSet
- from HomogeneousAggregate(R)
- minColIndex : % -> Integer
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- minRowIndex : % -> Integer
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- more? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- ncols : % -> NonNegativeInteger
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- nrows : % -> NonNegativeInteger
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- nullSpace : % -> List(DirectProduct(m, R)) if R has IntegralDomain
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- nullity : % -> NonNegativeInteger if R has IntegralDomain
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- parts : % -> List(R)
- from HomogeneousAggregate(R)
- qelt : (%, Integer, Integer) -> R
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- random : () -> % if R has Finite
- from Finite
- rank : % -> NonNegativeInteger if R has IntegralDomain
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- rectangularMatrix : Matrix(R) -> %
rectangularMatrix(m)
converts a matrix of type Matrix to a matrix of type RectangularMatrix
.
- row : (%, Integer) -> DirectProduct(n, R)
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- rowEchelon : % -> % if R has EuclideanDomain
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- sample : () -> %
- from Aggregate
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- size? : (%, NonNegativeInteger) -> Boolean
- from Aggregate
- smaller? : (%, %) -> Boolean if R has Finite
- from Comparable
- square? : % -> Boolean
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- subtractIfCan : (%, %) -> Union(%, "failed") if R has AbelianGroup
- from CancellationAbelianMonoid
- symmetric? : % -> Boolean
- from RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
ConvertibleTo(InputForm)
RectangularMatrixCategory(m, n, R, DirectProduct(n, R), DirectProduct(m, R))
Aggregate
BiModule(R, R)
BasicType
CancellationAbelianMonoid
RightModule(R)
LeftModule(R)
CoercibleTo(Matrix(R))
Finite
SetCategory
CoercibleTo(OutputForm)
AbelianGroup
AbelianSemiGroup
InnerEvalable(R, R)
finiteAggregate
Module(R)
Evalable(R)
AbelianMonoid
Hashable
HomogeneousAggregate(R)