SolvableSkewPolynomialCategory(R, Expon)
skpol.spad line 6
[edit on github]
This is the category of polynomials in noncommutative variables over noncommutative rings. We do not assume that variables and elements of the base ring commute. We assume that the polynomial ring is of solvable type, so noncommutative version of Buchberger algorithm works.
- * : (%, %) -> %
- from Magma
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- degree : % -> Expon
degree(p)
returns the maximum of the exponents of the terms of p
.
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
leadingCoefficient(p)
returns the coefficient of the highest degree term of p
.
- leadingMonomial : % -> %
leadingMonomial(p)
returns the monomial of p
with the highest degree.
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- monomial : (R, Expon) -> %
monomial(r, e)
makes a term from a coefficient r
and an exponent e
.
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
reductum(u)
returns u
minus its leading monomial returns zero if handed the zero element.
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
RightModule(%)
Rng
Monoid
Ring
SemiGroup
CancellationAbelianMonoid
LeftModule(%)
NonAssociativeRing
BasicType
unitsKnown
Magma
NonAssociativeSemiRng
SemiRing
AbelianGroup
NonAssociativeSemiRing
SetCategory
AbelianSemiGroup
AbelianMonoid
BiModule(%, %)
NonAssociativeRng
LeftModule(R)
MagmaWithUnit
CoercibleTo(OutputForm)
SemiRng