SolvableSkewPolynomialCategory(R, Expon)

skpol.spad line 6 [edit on github]

This is the category of polynomials in noncommutative variables over noncommutative rings. We do not assume that variables and elements of the base ring commute. We assume that the polynomial ring is of solvable type, so noncommutative version of Buchberger algorithm works.

* : (%, %) -> %
from Magma
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
degree : % -> Expon

degree(p) returns the maximum of the exponents of the terms of p.

latex : % -> String
from SetCategory
leadingCoefficient : % -> R

leadingCoefficient(p) returns the coefficient of the highest degree term of p.

leadingMonomial : % -> %

leadingMonomial(p) returns the monomial of p with the highest degree.

leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
monomial : (R, Expon) -> %

monomial(r, e) makes a term from a coefficient r and an exponent e.

one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
recip : % -> Union(%, "failed")
from MagmaWithUnit
reductum : % -> %

reductum(u) returns u minus its leading monomial returns zero if handed the zero element.

rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

RightModule(%)

Rng

Monoid

Ring

SemiGroup

CancellationAbelianMonoid

LeftModule(%)

NonAssociativeRing

BasicType

unitsKnown

Magma

NonAssociativeSemiRng

SemiRing

AbelianGroup

NonAssociativeSemiRing

SetCategory

AbelianSemiGroup

AbelianMonoid

BiModule(%, %)

NonAssociativeRng

LeftModule(R)

MagmaWithUnit

CoercibleTo(OutputForm)

SemiRng