DeRhamComplex(CoefRing, listIndVar)
derham.spad line 278
[edit on github]
The deRham complex of Euclidean space, that is, the class of differential forms of arbitrary degree over a coefficient ring. See Flanders, Harley, Differential Forms, With Applications to the Physical Sciences, New York, Academic Press, 1963.
- * : (%, %) -> %
- from Magma
- * : (Expression(CoefRing), %) -> %
- from LeftModule(Expression(CoefRing))
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coefficient : (%, %) -> Expression(CoefRing)
coefficient(df, u)
, where df
is a differential form, returns the coefficient of df
containing the basis term u
if such a term exists, and 0 otherwise.
- coerce : Expression(CoefRing) -> %
- from LeftAlgebra(Expression(CoefRing))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- degree : % -> NonNegativeInteger
degree(df)
returns the homogeneous degree of differential form df
.
- exteriorDifferential : % -> %
exteriorDifferential(df)
returns the exterior derivative (gradient, curl, divergence, ...) of the differential form df
.
- generator : NonNegativeInteger -> %
generator(n)
returns the n
th basis term for a differential form.
- homogeneous? : % -> Boolean
homogeneous?(df)
tests if all of the terms of differential form df
have the same degree.
- latex : % -> String
- from SetCategory
- leadingBasisTerm : % -> %
leadingBasisTerm(df)
returns the leading basis term of differential form df
.
- leadingCoefficient : % -> Expression(CoefRing)
leadingCoefficient(df)
returns the leading coefficient of differential form df
.
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- map : (Mapping(Expression(CoefRing), Expression(CoefRing)), %) -> %
map(f, df)
replaces each coefficient x
of differential form df
by f(x)
.
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
reductum(df)
, where df
is a differential form, returns df
minus the leading term of df
if df
has two or more terms, and 0 otherwise.
- retract : % -> Expression(CoefRing)
- from RetractableTo(Expression(CoefRing))
- retractIfCan : % -> Union(Expression(CoefRing), "failed")
- from RetractableTo(Expression(CoefRing))
- retractable? : % -> Boolean
retractable?(df)
tests if differential form df
is a 0-form, i.e. if degree(df
) = 0.
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- totalDifferential : Expression(CoefRing) -> %
totalDifferential(x)
returns the total differential (gradient) form for element x
.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
RightModule(%)
NonAssociativeSemiRng
Monoid
Ring
LeftAlgebra(Expression(CoefRing))
SemiGroup
CancellationAbelianMonoid
LeftModule(%)
MagmaWithUnit
RetractableTo(Expression(CoefRing))
BasicType
unitsKnown
NonAssociativeRing
Rng
CoercibleTo(OutputForm)
SemiRing
AbelianGroup
AbelianSemiGroup
SetCategory
CoercibleFrom(Expression(CoefRing))
AbelianMonoid
Magma
LeftModule(Expression(CoefRing))
BiModule(%, %)
NonAssociativeRng
NonAssociativeSemiRing
SemiRng