distro.spad line 694 [edit on github]
Domain for distributions formally given by moments. moments and different kinds of cumulants are stored in streams and computed on demand.
booleanCumulantFromJacobi(n, aa, bb)
computes the n
th Boolean cumulant from the given Jacobiparameters aa
and bb
.
construct(mom, ccum, fcum, bcum)
constructs a distribution with moments mom
, classical cumulants ccum
, free cumulants fcum
and boolean cumulants bcum
. The user must make sure that these are consistent, otherwise the results are unpredictable!
distributionByBooleanCumulants(bb)
initiates a distribution with given Boolean cumulants bb
.
distributionByBooleanCumulants(bb)
initiates a distribution with given Boolean cumulants bb
.
distributionByEvenMoments(kk)
initiates a distribution with given classical cumulants kk
.
distributionByEvenMoments(kk)
initiates a distribution with given classical cumulants kk
.
distributionByEvenMoments(mm)
initiates a distribution with given even moments mm
and odd moments zero.
distributionByEvenMoments(mm)
initiates a distribution with given even moments mm
and odd moments zero.
distributionByFreeCumulants(cc)
initiates a distribution with given free cumulants cc
.
distributionByFreeCumulants(cc)
initiates a distribution with given free cumulants cc
.
distributionByJacobiParameters(aa, bb)
initiates a distribution with given Jacobi parameters [aa, bb]
.
distributionByJacobiParameters(aa, bb)
initiates a distribution with given Jacobi parameters [aa, bb]
.
distributionByMoments(mm)
initiates a distribution with given moments mm
.
distributionByMoments(mm)
initiates a distribution with given moments mm
.
distributionByMonotoneCumulants(hh)
initiates a distribution with given monotone cumulants hh
.
distributionByMonotoneCumulants(hh)
initiates a distribution with given monotone cumulants hh
.
distributionBySTransform(series)
initiates a distribution with given S
-transform series
.
distributionBySTransform(series)
initiates a distribution with given S
-transform series
.
freeMultiplicativeConvolution(mu, nu)
computes the free multiplicative convolution of the distributions mu
and nu
.