distro.spad line 694 [edit on github]
Domain for distributions formally given by moments. moments and different kinds of cumulants are stored in streams and computed on demand.
booleanCumulantFromJacobi(n, aa, bb) computes the nth Boolean cumulant from the given Jacobiparameters aa and bb.
construct(mom, ccum, fcum, bcum) constructs a distribution with moments mom, classical cumulants ccum, free cumulants fcum and boolean cumulants bcum. The user must make sure that these are consistent, otherwise the results are unpredictable!
distributionByBooleanCumulants(bb) initiates a distribution with given Boolean cumulants bb.
distributionByBooleanCumulants(bb) initiates a distribution with given Boolean cumulants bb.
distributionByEvenMoments(kk) initiates a distribution with given classical cumulants kk.
distributionByEvenMoments(kk) initiates a distribution with given classical cumulants kk.
distributionByEvenMoments(mm) initiates a distribution with given even moments mm and odd moments zero.
distributionByEvenMoments(mm) initiates a distribution with given even moments mm and odd moments zero.
distributionByFreeCumulants(cc) initiates a distribution with given free cumulants cc.
distributionByFreeCumulants(cc) initiates a distribution with given free cumulants cc.
distributionByJacobiParameters(aa, bb) initiates a distribution with given Jacobi parameters [aa, bb].
distributionByJacobiParameters(aa, bb) initiates a distribution with given Jacobi parameters [aa, bb].
distributionByMoments(mm) initiates a distribution with given moments mm.
distributionByMoments(mm) initiates a distribution with given moments mm.
distributionByMonotoneCumulants(hh) initiates a distribution with given monotone cumulants hh.
distributionByMonotoneCumulants(hh) initiates a distribution with given monotone cumulants hh.
distributionBySTransform(series) initiates a distribution with given S-transform series.
distributionBySTransform(series) initiates a distribution with given S-transform series.
freeMultiplicativeConvolution(mu, nu) computes the free multiplicative convolution of the distributions mu and nu.