FreeModule(R, S)
poly.spad line 101
[edit on github]
A bi
-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored. old domain FreeModule1
was merged to it in May 2009 The description of the latter: This domain implements linear combinations of elements from the domain S
with coefficients in the domain R
where S
is an ordered set and R
is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: XDistributedPolynomial, XRecursivePolynomial. Author: Michel Petitot (petitot@lifl.fr
)
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (R, S) -> %
r*b
returns the product of r
by b
.
- * : (S, R) -> %
s*r
returns the product r*s
used by XRecursivePolynomial
- * : (Integer, %) -> % if R has AbelianGroup
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> % if R has AbelianGroup
- from AbelianGroup
- - : (%, %) -> % if R has AbelianGroup
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- < : (%, %) -> Boolean if S has OrderedSet and R has OrderedAbelianMonoid or S has OrderedSet and R has OrderedAbelianMonoidSup
- from PartialOrder
- <= : (%, %) -> Boolean if S has OrderedSet and R has OrderedAbelianMonoid or S has OrderedSet and R has OrderedAbelianMonoidSup
- from PartialOrder
- = : (%, %) -> Boolean
- from BasicType
- > : (%, %) -> Boolean if S has OrderedSet and R has OrderedAbelianMonoid or S has OrderedSet and R has OrderedAbelianMonoidSup
- from PartialOrder
- >= : (%, %) -> Boolean if S has OrderedSet and R has OrderedAbelianMonoid or S has OrderedSet and R has OrderedAbelianMonoidSup
- from PartialOrder
- coefficient : (%, S) -> R
- from FreeModuleCategory(R, S)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, S)
- coerce : S -> % if R has SemiRing
- from CoercibleFrom(S)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- construct : List(Record(k : S, c : R)) -> %
- from IndexedProductCategory(R, S)
- constructOrdered : List(Record(k : S, c : R)) -> % if S has Comparable
- from IndexedProductCategory(R, S)
- hash : % -> SingleInteger if S has Hashable and R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if S has Hashable and R has Hashable
- from Hashable
- inf : (%, %) -> % if R has OrderedAbelianMonoidSup and S has OrderedSet
- from OrderedAbelianMonoidSup
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R if S has Comparable
- from IndexedProductCategory(R, S)
- leadingMonomial : % -> % if S has Comparable
- from IndexedProductCategory(R, S)
- leadingSupport : % -> S if S has Comparable
- from IndexedProductCategory(R, S)
- leadingTerm : % -> Record(k : S, c : R) if S has Comparable
- from IndexedProductCategory(R, S)
- linearExtend : (Mapping(R, S), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, S)
- listOfTerms : % -> List(Record(k : S, c : R))
- from IndexedDirectProductCategory(R, S)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, S)
- max : (%, %) -> % if S has OrderedSet and R has OrderedAbelianMonoid or S has OrderedSet and R has OrderedAbelianMonoidSup
- from OrderedSet
- min : (%, %) -> % if S has OrderedSet and R has OrderedAbelianMonoid or S has OrderedSet and R has OrderedAbelianMonoidSup
- from OrderedSet
- monomial : (R, S) -> %
- from IndexedProductCategory(R, S)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, S)
- monomials : % -> List(%)
- from FreeModuleCategory(R, S)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, S)
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- reductum : % -> % if S has Comparable
- from IndexedProductCategory(R, S)
- retract : % -> S if R has SemiRing
- from RetractableTo(S)
- retractIfCan : % -> Union(S, "failed") if R has SemiRing
- from RetractableTo(S)
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if S has OrderedSet and R has OrderedAbelianMonoidSup or R has Comparable and S has Comparable or S has OrderedSet and R has OrderedAbelianMonoid
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- sup : (%, %) -> % if R has OrderedAbelianMonoidSup and S has OrderedSet
- from OrderedAbelianMonoidSup
- support : % -> List(S)
- from FreeModuleCategory(R, S)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
OrderedAbelianMonoidSup
IndexedDirectProductCategory(R, S)
BiModule(R, R)
OrderedCancellationAbelianMonoid
Module(R)
OrderedAbelianSemiGroup
RetractableTo(S)
AbelianProductCategory(R)
BasicType
IndexedProductCategory(R, S)
RightModule(R)
Hashable
AbelianGroup
CoercibleFrom(S)
AbelianSemiGroup
SetCategory
OrderedSet
FreeModuleCategory(R, S)
AbelianMonoid
OrderedAbelianMonoid
Comparable
PartialOrder
LeftModule(R)
CoercibleTo(OutputForm)
CancellationAbelianMonoid