ResidueRing(F, Expon, VarSet, FPol, LFPol)

resring.spad line 1 [edit on github]

ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements

* : (%, %) -> %
from Magma
* : (%, F) -> %
from RightModule(F)
* : (F, %) -> %
from LeftModule(F)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : F -> %
from Algebra(F)
coerce : FPol -> %

coerce(f) produces the equivalence class of f in the residue ring

coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
lift : % -> FPol

lift(x) return the canonical representative of the equivalence class x

one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reduce : FPol -> %

reduce(f) produces the equivalence class of f in the residue ring

rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

RightModule(%)

Monoid

NonAssociativeSemiRing

SetCategory

Ring

SemiGroup

CancellationAbelianMonoid

LeftModule(%)

BasicType

unitsKnown

NonAssociativeAlgebra(F)

Module(%)

NonAssociativeRing

NonAssociativeAlgebra(%)

Rng

Magma

NonAssociativeSemiRng

SemiRing

Algebra(%)

Module(F)

AbelianGroup

AbelianSemiGroup

CommutativeRing

CommutativeStar

Algebra(F)

AbelianMonoid

LeftModule(F)

RightModule(F)

BiModule(%, %)

NonAssociativeRng

BiModule(F, F)

TwoSidedRecip

MagmaWithUnit

CoercibleTo(OutputForm)

SemiRng