ResidueRing(F, Expon, VarSet, FPol, LFPol)
resring.spad line 1
[edit on github]
ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements
- * : (%, %) -> %
- from Magma
- * : (%, F) -> %
- from RightModule(F)
- * : (F, %) -> %
- from LeftModule(F)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : F -> %
- from Algebra(F)
- coerce : FPol -> %
coerce(f)
produces the equivalence class of f
in the residue ring
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- lift : % -> FPol
lift(x)
return the canonical representative of the equivalence class x
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reduce : FPol -> %
reduce(f)
produces the equivalence class of f
in the residue ring
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
RightModule(%)
Monoid
NonAssociativeSemiRing
SetCategory
Ring
SemiGroup
CancellationAbelianMonoid
LeftModule(%)
BasicType
unitsKnown
NonAssociativeAlgebra(F)
Module(%)
NonAssociativeRing
NonAssociativeAlgebra(%)
Rng
Magma
NonAssociativeSemiRng
SemiRing
Algebra(%)
Module(F)
AbelianGroup
AbelianSemiGroup
CommutativeRing
CommutativeStar
Algebra(F)
AbelianMonoid
LeftModule(F)
RightModule(F)
BiModule(%, %)
NonAssociativeRng
BiModule(F, F)
TwoSidedRecip
MagmaWithUnit
CoercibleTo(OutputForm)
SemiRng