Bialgebra(R, MxM)

tensor.spad line 471 [edit on github]

A bialgebra is a coalgebra which at the same time is an algebra such that the comultiplication is also an algebra homomorphism. MxM: Module(R) should be replaced by a more restricted category, but it is not clear at this point which one.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : R -> %
from Algebra(R)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
coproduct : % -> MxM
from Coalgebra(R, MxM)
counit : % -> R
from Coalgebra(R, MxM)
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(R)
recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

RightModule(%)

Rng

Coalgebra(R, MxM)

Monoid

NonAssociativeAlgebra(R)

Ring

SemiGroup

CancellationAbelianMonoid

LeftModule(%)

Algebra(R)

LeftModule(R)

unitsKnown

NonAssociativeRing

Magma

SemiRing

Module(R)

AbelianGroup

NonAssociativeSemiRing

SetCategory

AbelianSemiGroup

BiModule(R, R)

AbelianMonoid

BiModule(%, %)

NonAssociativeRng

NonAssociativeSemiRng

BasicType

MagmaWithUnit

RightModule(R)

CoercibleTo(OutputForm)

SemiRng