Bialgebra(R, MxM)
tensor.spad line 471
[edit on github]
A bialgebra is a coalgebra which at the same time is an algebra such that the comultiplication is also an algebra homomorphism. MxM: Module(R
) should be replaced by a more restricted category, but it is not clear at this point which one.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : R -> %
- from Algebra(R)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- coproduct : % -> MxM
- from Coalgebra(R, MxM)
- counit : % -> R
- from Coalgebra(R, MxM)
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
RightModule(%)
Rng
Coalgebra(R, MxM)
Monoid
NonAssociativeAlgebra(R)
Ring
SemiGroup
CancellationAbelianMonoid
LeftModule(%)
Algebra(R)
LeftModule(R)
unitsKnown
NonAssociativeRing
Magma
SemiRing
Module(R)
AbelianGroup
NonAssociativeSemiRing
SetCategory
AbelianSemiGroup
BiModule(R, R)
AbelianMonoid
BiModule(%, %)
NonAssociativeRng
NonAssociativeSemiRng
BasicType
MagmaWithUnit
RightModule(R)
CoercibleTo(OutputForm)
SemiRng