DirichletRing(Coef)

dirichlet.spad line 34 [edit on github]

DirichletRing is the ring of arithmetical functions with Dirichlet convolution as multiplication

* : (%, %) -> %
from Magma
* : (%, Coef) -> % if Coef has CommutativeRing
from RightModule(Coef)
* : (Coef, %) -> % if Coef has CommutativeRing
from LeftModule(Coef)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
additive? : (%, PositiveInteger) -> Boolean

additive?(a, n) returns true if the first n coefficients of a are additive

annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associates? : (%, %) -> Boolean if Coef has CommutativeRing
from EntireRing
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> % if Coef has CommutativeRing
from Algebra(%)
coerce : Coef -> % if Coef has CommutativeRing
from Algebra(Coef)
coerce : Integer -> %
from NonAssociativeRing
coerce : Mapping(Coef, PositiveInteger) -> %

coerce : Stream(Coef) -> %

coerce : % -> Mapping(Coef, PositiveInteger)

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
coerce : % -> Stream(Coef)

commutator : (%, %) -> %
from NonAssociativeRng
elt : (%, PositiveInteger) -> Coef
from Eltable(PositiveInteger, Coef)
exquo : (%, %) -> Union(%, "failed") if Coef has CommutativeRing
from EntireRing
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
multiplicative? : (%, PositiveInteger) -> Boolean

multiplicative?(a, n) returns true if the first n coefficients of a are multiplicative

one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> % if Coef has CommutativeRing
from NonAssociativeAlgebra(Coef)
recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit? : % -> Boolean if Coef has CommutativeRing
from EntireRing
unitCanonical : % -> % if Coef has CommutativeRing
from EntireRing
unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has CommutativeRing
from EntireRing
zero? : % -> Boolean
from AbelianMonoid
zeta : () -> %

zeta() returns the function which is constantly one

~= : (%, %) -> Boolean
from BasicType

IntegralDomain

Module(Coef)

noZeroDivisors

LeftModule(Coef)

Algebra(Coef)

Monoid

Algebra(%)

AbelianMonoid

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

AbelianGroup

CommutativeStar

Eltable(PositiveInteger, Coef)

LeftModule(%)

Module(%)

SetCategory

Rng

CommutativeRing

TwoSidedRecip

Magma

SemiGroup

RightModule(Coef)

BiModule(%, %)

unitsKnown

CoercibleTo(OutputForm)

AbelianSemiGroup

NonAssociativeSemiRing

RightModule(%)

NonAssociativeAlgebra(%)

BiModule(Coef, Coef)

NonAssociativeRng

Ring

SemiRng

EntireRing

NonAssociativeSemiRng

BasicType

NonAssociativeAlgebra(Coef)

SemiRing