DirichletRing(Coef)
dirichlet.spad line 34
[edit on github]
DirichletRing is the ring of arithmetical functions with Dirichlet convolution as multiplication
- * : (%, %) -> %
- from Magma
- * : (%, Coef) -> % if Coef has CommutativeRing
- from RightModule(Coef)
- * : (Coef, %) -> % if Coef has CommutativeRing
- from LeftModule(Coef)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- additive? : (%, PositiveInteger) -> Boolean
additive?(a, n)
returns true
if the first n
coefficients of a are additive
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associates? : (%, %) -> Boolean if Coef has CommutativeRing
- from EntireRing
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> % if Coef has CommutativeRing
- from Algebra(%)
- coerce : Coef -> % if Coef has CommutativeRing
- from Algebra(Coef)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : Mapping(Coef, PositiveInteger) -> %
- coerce : Stream(Coef) -> %
- coerce : % -> Mapping(Coef, PositiveInteger)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> Stream(Coef)
- commutator : (%, %) -> %
- from NonAssociativeRng
- elt : (%, PositiveInteger) -> Coef
- from Eltable(PositiveInteger, Coef)
- exquo : (%, %) -> Union(%, "failed") if Coef has CommutativeRing
- from EntireRing
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- multiplicative? : (%, PositiveInteger) -> Boolean
multiplicative?(a, n)
returns true
if the first n
coefficients of a are multiplicative
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if Coef has CommutativeRing
- from NonAssociativeAlgebra(Coef)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit? : % -> Boolean if Coef has CommutativeRing
- from EntireRing
- unitCanonical : % -> % if Coef has CommutativeRing
- from EntireRing
- unitNormal : % -> Record(unit : %, canonical : %, associate : %) if Coef has CommutativeRing
- from EntireRing
- zero? : % -> Boolean
- from AbelianMonoid
- zeta : () -> %
zeta()
returns the function which is constantly one
- ~= : (%, %) -> Boolean
- from BasicType
IntegralDomain
Module(Coef)
noZeroDivisors
LeftModule(Coef)
Algebra(Coef)
Monoid
Algebra(%)
AbelianMonoid
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
CommutativeStar
Eltable(PositiveInteger, Coef)
LeftModule(%)
Module(%)
SetCategory
Rng
CommutativeRing
TwoSidedRecip
Magma
SemiGroup
RightModule(Coef)
BiModule(%, %)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
RightModule(%)
NonAssociativeAlgebra(%)
BiModule(Coef, Coef)
NonAssociativeRng
Ring
SemiRng
EntireRing
NonAssociativeSemiRng
BasicType
NonAssociativeAlgebra(Coef)
SemiRing