FramedNonAssociativeAlgebra(R)
naalgc.spad line 895
[edit on github]
FramedNonAssociativeAlgebra(R
) is a FiniteRankNonAssociativeAlgebra (i.e. a non associative algebra over R
which is a free R
-module of finite rank) over a commutative ring R
together with a fixed R
-module basis.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, PositiveInteger) -> %
- from Magma
- alternative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- antiAssociative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- antiCommutative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- apply : (Matrix(R), %) -> %
apply(m, a)
defines a left operation of n
by n
matrices where n
is the rank of the algebra in terms of matrix-vector multiplication, this is a substitute for a left module structure. Error: if shape of matrix doesn't
fit.
- associative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- associator : (%, %, %) -> %
- from NonAssociativeRng
- associatorDependence : () -> List(Vector(R)) if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- basis : () -> Vector(%)
- from FramedModule(R)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionsForIdempotents : () -> List(Polynomial(R))
conditionsForIdempotents()
determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed R
-module basis.
- conditionsForIdempotents : Vector(%) -> List(Polynomial(R))
- from FiniteRankNonAssociativeAlgebra(R)
- convert : Vector(R) -> %
- from FramedModule(R)
- convert : % -> InputForm if R has Finite
- from ConvertibleTo(InputForm)
- convert : % -> Vector(R)
- from FramedModule(R)
- coordinates : Vector(%) -> Matrix(R)
- from FramedModule(R)
- coordinates : (Vector(%), Vector(%)) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- coordinates : % -> Vector(R)
- from FramedModule(R)
- coordinates : (%, Vector(%)) -> Vector(R)
- from FiniteRankNonAssociativeAlgebra(R)
- elt : (%, Integer) -> R
elt(a, i)
returns the i
-th coefficient of a
with respect to the fixed R
-module basis.
- enumerate : () -> List(%) if R has Finite
- from Finite
- flexible? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- hash : % -> SingleInteger if R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if R has Hashable
- from Hashable
- index : PositiveInteger -> % if R has Finite
- from Finite
- jacobiIdentity? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- jordanAdmissible? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- jordanAlgebra? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- latex : % -> String
- from SetCategory
- leftAlternative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- leftCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftDiscriminant : () -> R
leftDiscriminant()
returns the determinant of the n
-by-n
matrix whose element at the i
-
th row and j
-
th column is given by the left trace of the product vi*vj
, where v1
, ..., vn
are the elements of the fixed R
-module basis. Note: the same as determinant(leftTraceMatrix())
.
- leftDiscriminant : Vector(%) -> R
- from FiniteRankNonAssociativeAlgebra(R)
- leftMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- leftNorm : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
leftRankPolynomial()
calculates the left minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.
- leftRecip : % -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- leftRegularRepresentation : % -> Matrix(R)
leftRegularRepresentation(a)
returns the matrix of the linear map defined by left multiplication by a
with respect to the fixed R
-module basis.
- leftRegularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftTrace : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- leftTraceMatrix : () -> Matrix(R)
leftTraceMatrix()
is the n
-by-n
matrix whose element at the i
-
th row and j
-
th column is given by left trace of the product vi*vj
, where v1
, ..., vn
are the elements of the fixed R
-module basis.
- leftTraceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftUnit : () -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- leftUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- lieAdmissible? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- lieAlgebra? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- lookup : % -> PositiveInteger if R has Finite
- from Finite
- noncommutativeJordanAlgebra? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- powerAssociative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- random : () -> % if R has Finite
- from Finite
- rank : () -> PositiveInteger
- from FiniteRankNonAssociativeAlgebra(R)
- recip : % -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- represents : Vector(R) -> %
- from FramedModule(R)
- represents : (Vector(R), Vector(%)) -> %
- from FiniteRankNonAssociativeAlgebra(R)
- rightAlternative? : () -> Boolean
- from FiniteRankNonAssociativeAlgebra(R)
- rightCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightDiscriminant : () -> R
rightDiscriminant()
returns the determinant of the n
-by-n
matrix whose element at the i
-
th row and j
-
th column is given by the right trace of the product vi*vj
, where v1
, ..., vn
are the elements of the fixed R
-module basis. Note: the same as determinant(rightTraceMatrix())
.
- rightDiscriminant : Vector(%) -> R
- from FiniteRankNonAssociativeAlgebra(R)
- rightMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- rightNorm : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if R has Field
rightRankPolynomial()
calculates the right minimal polynomial of the generic element in the algebra, defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.
- rightRecip : % -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- rightRegularRepresentation : % -> Matrix(R)
rightRegularRepresentation(a)
returns the matrix of the linear map defined by right multiplication by a
with respect to the fixed R
-module basis.
- rightRegularRepresentation : (%, Vector(%)) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightTrace : % -> R
- from FiniteRankNonAssociativeAlgebra(R)
- rightTraceMatrix : () -> Matrix(R)
rightTraceMatrix()
is the n
-by-n
matrix whose element at the i
-
th row and j
-
th column is given by the right trace of the product vi*vj
, where v1
, ..., vn
are the elements of the fixed R
-module basis.
- rightTraceMatrix : Vector(%) -> Matrix(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightUnit : () -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- rightUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if R has Finite
- from Finite
- smaller? : (%, %) -> Boolean if R has Finite
- from Comparable
- someBasis : () -> Vector(%)
- from FiniteRankNonAssociativeAlgebra(R)
- structuralConstants : () -> Vector(Matrix(R))
structuralConstants()
calculates the structural constants [(gammaijk) for k in 1..rank()]
defined by vi
* vj = gammaij1 * v1 + ... + gammaijn * vn
, where v1
, ..., vn
is the fixed R
-module basis.
- structuralConstants : Vector(%) -> Vector(Matrix(R))
- from FiniteRankNonAssociativeAlgebra(R)
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit : () -> Union(%, "failed") if R has IntegralDomain
- from FiniteRankNonAssociativeAlgebra(R)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
ConvertibleTo(InputForm)
NonAssociativeSemiRng
FiniteRankNonAssociativeAlgebra(R)
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(R)
LeftModule(R)
SetCategory
CoercibleTo(OutputForm)
FramedModule(R)
Magma
NonAssociativeRng
unitsKnown
AbelianGroup
AbelianSemiGroup
CancellationAbelianMonoid
RightModule(R)
Module(R)
Hashable
Finite
BasicType