IntegerMod(p)
fmod.spad line 1
[edit on github]
IntegerMod(n
) creates the ring of integers reduced modulo the integer n
.
- * : (%, %) -> %
- from Magma
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : % -> %
- from Algebra(%)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- convert : % -> InputForm
- from ConvertibleTo(InputForm)
- convert : % -> Integer
- from ConvertibleTo(Integer)
- enumerate : () -> List(%)
- from Finite
- hash : % -> SingleInteger
- from Hashable
- hashUpdate! : (HashState, %) -> HashState
- from Hashable
- index : PositiveInteger -> %
- from Finite
- init : () -> %
- from StepThrough
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- lookup : % -> PositiveInteger
- from Finite
- nextItem : % -> Union(%, "failed")
- from StepThrough
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(%)
- random : () -> %
- from Finite
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger
- from Finite
- smaller? : (%, %) -> Boolean
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
ConvertibleTo(InputForm)
Algebra(%)
RightModule(%)
Monoid
AbelianMonoid
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
StepThrough
LeftModule(%)
CommutativeStar
Finite
Module(%)
SetCategory
CoercibleTo(OutputForm)
Rng
CommutativeRing
TwoSidedRecip
Magma
SemiGroup
BiModule(%, %)
unitsKnown
AbelianGroup
AbelianSemiGroup
ConvertibleTo(Integer)
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
NonAssociativeRng
Ring
SemiRng
NonAssociativeSemiRng
Hashable
BasicType
SemiRing