IntegerMod(p)

fmod.spad line 1 [edit on github]

IntegerMod(n) creates the ring of integers reduced modulo the integer n.

* : (%, %) -> %
from Magma
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coerce : % -> %
from Algebra(%)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
convert : % -> InputForm
from ConvertibleTo(InputForm)
convert : % -> Integer
from ConvertibleTo(Integer)
enumerate : () -> List(%)
from Finite
hash : % -> SingleInteger
from Hashable
hashUpdate! : (HashState, %) -> HashState
from Hashable
index : PositiveInteger -> %
from Finite
init : () -> %
from StepThrough
latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
lookup : % -> PositiveInteger
from Finite
nextItem : % -> Union(%, "failed")
from StepThrough
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(%)
random : () -> %
from Finite
recip : % -> Union(%, "failed")
from MagmaWithUnit
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
size : () -> NonNegativeInteger
from Finite
smaller? : (%, %) -> Boolean
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

ConvertibleTo(InputForm)

Algebra(%)

RightModule(%)

Monoid

AbelianMonoid

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

StepThrough

LeftModule(%)

CommutativeStar

Finite

Module(%)

SetCategory

CoercibleTo(OutputForm)

Rng

CommutativeRing

TwoSidedRecip

Magma

SemiGroup

BiModule(%, %)

unitsKnown

AbelianGroup

AbelianSemiGroup

ConvertibleTo(Integer)

NonAssociativeSemiRing

NonAssociativeAlgebra(%)

NonAssociativeRng

Ring

SemiRng

NonAssociativeSemiRng

Hashable

BasicType

SemiRing