LieExponentials(VarSet, R, Order)
xlpoly.spad line 982
[edit on github]
Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than Order are assumed to be null. The implementation inherits from the XPBWPolynomial domain constructor: Lyndon coordinates are exponential coordinates of the second kind. Author: Michel Petitot (petitot@lifl.fr).
- * : (%, %) -> %
- from Magma
- / : (%, %) -> %
- from Group
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- LyndonBasis : List(VarSet) -> List(LiePolynomial(VarSet, R))
LyndonBasis(lv) returns the Lyndon basis of the nilpotent free Lie algebra.
- LyndonCoordinates : % -> List(Record(k : LyndonWord(VarSet), c : R))
LyndonCoordinates(g) returns the exponential coordinates of g.
- ^ : (%, Integer) -> %
- from Group
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> XDistributedPolynomial(VarSet, R)
coerce(g) returns the internal representation of g.
- coerce : % -> XPBWPolynomial(VarSet, R)
coerce(g) returns the internal representation of g.
- commutator : (%, %) -> %
- from Group
- conjugate : (%, %) -> %
- from Group
- exp : LiePolynomial(VarSet, R) -> %
exp(p) returns the exponential of p.
- identification : (%, %) -> List(Equation(R))
identification(g, h) returns the list of equations g_i = h_i, where g_i (resp. h_i) are exponential coordinates of g (resp. h).
- inv : % -> %
- from Group
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- listOfTerms : % -> List(Record(k : PoincareBirkhoffWittLyndonBasis(VarSet), c : R))
listOfTerms(p) returns the internal representation of p.
- log : % -> LiePolynomial(VarSet, R)
log(p) returns the logarithm of p.
- mirror : % -> %
mirror(g) is the mirror of the internal representation of g.
- one? : % -> Boolean
- from MagmaWithUnit
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from MagmaWithUnit
- varList : % -> List(VarSet)
varList(g) returns the list of variables of g.
- ~= : (%, %) -> Boolean
- from BasicType
SetCategory
Group
CoercibleTo(OutputForm)
MagmaWithUnit
SemiGroup
TwoSidedRecip
Magma
unitsKnown
Monoid
BasicType