XPBWPolynomial(VarSet, R)

xlpoly.spad line 754 [edit on github]

This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. Author: Michel Petitot (petitot@lifl.fr).

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (VarSet, %) -> %
from XFreeAlgebra(VarSet, R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
LiePolyIfCan : % -> Union(LiePolynomial(VarSet, R), "failed")

LiePolyIfCan(p) return p if p is a Lie polynomial.

^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
coef : (%, %) -> R
from XFreeAlgebra(VarSet, R)
coef : (%, FreeMonoid(VarSet)) -> R
from XFreeAlgebra(VarSet, R)
coefficient : (%, PoincareBirkhoffWittLyndonBasis(VarSet)) -> R
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
coefficients : % -> List(R)
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
coerce : R -> %
from XAlgebra(R)
coerce : VarSet -> %
from XFreeAlgebra(VarSet, R)
coerce : FreeMonoid(VarSet) -> %
from CoercibleFrom(FreeMonoid(VarSet))
coerce : Integer -> %
from NonAssociativeRing
coerce : LiePolynomial(VarSet, R) -> %

coerce(p) returns p.

coerce : % -> OutputForm
from CoercibleTo(OutputForm)
coerce : % -> XDistributedPolynomial(VarSet, R)

coerce(p) returns p as a distributed polynomial.

coerce : % -> XRecursivePolynomial(VarSet, R)

coerce(p) returns p as a recursive polynomial.

commutator : (%, %) -> %
from NonAssociativeRng
constant : % -> R
from XFreeAlgebra(VarSet, R)
constant? : % -> Boolean
from XFreeAlgebra(VarSet, R)
construct : List(Record(k : PoincareBirkhoffWittLyndonBasis(VarSet), c : R)) -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
constructOrdered : List(Record(k : PoincareBirkhoffWittLyndonBasis(VarSet), c : R)) -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
degree : % -> NonNegativeInteger
from XPolynomialsCat(VarSet, R)
exp : (%, NonNegativeInteger) -> % if R has Module(Fraction(Integer))

exp(p, n) returns the exponential of p (truncated up to order n).

latex : % -> String
from SetCategory
leadingCoefficient : % -> R
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
leadingMonomial : % -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
leadingSupport : % -> PoincareBirkhoffWittLyndonBasis(VarSet)
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
leadingTerm : % -> Record(k : PoincareBirkhoffWittLyndonBasis(VarSet), c : R)
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
linearExtend : (Mapping(R, PoincareBirkhoffWittLyndonBasis(VarSet)), %) -> R
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
listOfTerms : % -> List(Record(k : PoincareBirkhoffWittLyndonBasis(VarSet), c : R))
from IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
log : (%, NonNegativeInteger) -> % if R has Module(Fraction(Integer))

log(p, n) returns the logarithm of p (truncated up to order n).

lquo : (%, %) -> %
from XFreeAlgebra(VarSet, R)
lquo : (%, VarSet) -> %
from XFreeAlgebra(VarSet, R)
lquo : (%, FreeMonoid(VarSet)) -> %
from XFreeAlgebra(VarSet, R)
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
maxdeg : % -> FreeMonoid(VarSet)
from XPolynomialsCat(VarSet, R)
mindeg : % -> FreeMonoid(VarSet)
from XFreeAlgebra(VarSet, R)
mindegTerm : % -> Record(k : FreeMonoid(VarSet), c : R)
from XFreeAlgebra(VarSet, R)
mirror : % -> %
from XFreeAlgebra(VarSet, R)
monomial : (R, FreeMonoid(VarSet)) -> %
from XFreeAlgebra(VarSet, R)
monomial : (R, PoincareBirkhoffWittLyndonBasis(VarSet)) -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
monomial? : % -> Boolean
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
monomials : % -> List(%)
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
one? : % -> Boolean
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(R)
product : (%, %, NonNegativeInteger) -> %

product(a, b, n) returns a*b (truncated up to order n).

quasiRegular : % -> %
from XFreeAlgebra(VarSet, R)
quasiRegular? : % -> Boolean
from XFreeAlgebra(VarSet, R)
recip : % -> Union(%, "failed")
from MagmaWithUnit
reductum : % -> %
from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
retract : % -> R
from RetractableTo(R)
retract : % -> FreeMonoid(VarSet)
from RetractableTo(FreeMonoid(VarSet))
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(FreeMonoid(VarSet), "failed")
from RetractableTo(FreeMonoid(VarSet))
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
rquo : (%, %) -> %
from XFreeAlgebra(VarSet, R)
rquo : (%, VarSet) -> %
from XFreeAlgebra(VarSet, R)
rquo : (%, FreeMonoid(VarSet)) -> %
from XFreeAlgebra(VarSet, R)
sample : () -> %
from AbelianMonoid
sh : (%, %) -> %
from XFreeAlgebra(VarSet, R)
sh : (%, NonNegativeInteger) -> %
from XFreeAlgebra(VarSet, R)
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(PoincareBirkhoffWittLyndonBasis(VarSet))
from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
trunc : (%, NonNegativeInteger) -> %
from XPolynomialsCat(VarSet, R)
varList : % -> List(VarSet)
from XFreeAlgebra(VarSet, R)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

CoercibleFrom(R)

Algebra(R)

XAlgebra(R)

Monoid

AbelianMonoid

BiModule(R, R)

XFreeAlgebra(VarSet, R)

NonAssociativeAlgebra(R)

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

AbelianGroup

BiModule(%, %)

LeftModule(R)

noZeroDivisors

LeftModule(%)

RetractableTo(FreeMonoid(VarSet))

SetCategory

CoercibleFrom(FreeMonoid(VarSet))

Rng

IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))

Magma

XPolynomialsCat(VarSet, R)

SemiGroup

SemiRing

IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))

CoercibleTo(OutputForm)

AbelianSemiGroup

NonAssociativeSemiRing

RightModule(%)

FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))

AbelianProductCategory(R)

Module(R)

RightModule(R)

RetractableTo(R)

NonAssociativeRng

unitsKnown

Ring

SemiRng

NonAssociativeSemiRng

BasicType