XPBWPolynomial(VarSet, R)
xlpoly.spad line 754
[edit on github]
This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. Author: Michel Petitot (petitot@lifl.fr
).
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (VarSet, %) -> %
- from XFreeAlgebra(VarSet, R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- LiePolyIfCan : % -> Union(LiePolynomial(VarSet, R), "failed")
LiePolyIfCan(p)
return p
if p
is a Lie polynomial.
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coef : (%, %) -> R
- from XFreeAlgebra(VarSet, R)
- coef : (%, FreeMonoid(VarSet)) -> R
- from XFreeAlgebra(VarSet, R)
- coefficient : (%, PoincareBirkhoffWittLyndonBasis(VarSet)) -> R
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- coefficients : % -> List(R)
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- coerce : R -> %
- from XAlgebra(R)
- coerce : VarSet -> %
- from XFreeAlgebra(VarSet, R)
- coerce : FreeMonoid(VarSet) -> %
- from CoercibleFrom(FreeMonoid(VarSet))
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : LiePolynomial(VarSet, R) -> %
coerce(p)
returns p
.
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> XDistributedPolynomial(VarSet, R)
coerce(p)
returns p
as a distributed polynomial.
- coerce : % -> XRecursivePolynomial(VarSet, R)
coerce(p)
returns p
as a recursive polynomial.
- commutator : (%, %) -> %
- from NonAssociativeRng
- constant : % -> R
- from XFreeAlgebra(VarSet, R)
- constant? : % -> Boolean
- from XFreeAlgebra(VarSet, R)
- construct : List(Record(k : PoincareBirkhoffWittLyndonBasis(VarSet), c : R)) -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- constructOrdered : List(Record(k : PoincareBirkhoffWittLyndonBasis(VarSet), c : R)) -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- degree : % -> NonNegativeInteger
- from XPolynomialsCat(VarSet, R)
- exp : (%, NonNegativeInteger) -> % if R has Module(Fraction(Integer))
exp(p, n)
returns the exponential of p
(truncated up to order n
).
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- leadingMonomial : % -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- leadingSupport : % -> PoincareBirkhoffWittLyndonBasis(VarSet)
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- leadingTerm : % -> Record(k : PoincareBirkhoffWittLyndonBasis(VarSet), c : R)
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, PoincareBirkhoffWittLyndonBasis(VarSet)), %) -> R
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- listOfTerms : % -> List(Record(k : PoincareBirkhoffWittLyndonBasis(VarSet), c : R))
- from IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- log : (%, NonNegativeInteger) -> % if R has Module(Fraction(Integer))
log(p, n)
returns the logarithm of p
(truncated up to order n
).
- lquo : (%, %) -> %
- from XFreeAlgebra(VarSet, R)
- lquo : (%, VarSet) -> %
- from XFreeAlgebra(VarSet, R)
- lquo : (%, FreeMonoid(VarSet)) -> %
- from XFreeAlgebra(VarSet, R)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- maxdeg : % -> FreeMonoid(VarSet)
- from XPolynomialsCat(VarSet, R)
- mindeg : % -> FreeMonoid(VarSet)
- from XFreeAlgebra(VarSet, R)
- mindegTerm : % -> Record(k : FreeMonoid(VarSet), c : R)
- from XFreeAlgebra(VarSet, R)
- mirror : % -> %
- from XFreeAlgebra(VarSet, R)
- monomial : (R, FreeMonoid(VarSet)) -> %
- from XFreeAlgebra(VarSet, R)
- monomial : (R, PoincareBirkhoffWittLyndonBasis(VarSet)) -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- monomial? : % -> Boolean
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- monomials : % -> List(%)
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- product : (%, %, NonNegativeInteger) -> %
product(a, b, n)
returns a*b
(truncated up to order n
).
- quasiRegular : % -> %
- from XFreeAlgebra(VarSet, R)
- quasiRegular? : % -> Boolean
- from XFreeAlgebra(VarSet, R)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
- from IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- retract : % -> R
- from RetractableTo(R)
- retract : % -> FreeMonoid(VarSet)
- from RetractableTo(FreeMonoid(VarSet))
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(FreeMonoid(VarSet), "failed")
- from RetractableTo(FreeMonoid(VarSet))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- rquo : (%, %) -> %
- from XFreeAlgebra(VarSet, R)
- rquo : (%, VarSet) -> %
- from XFreeAlgebra(VarSet, R)
- rquo : (%, FreeMonoid(VarSet)) -> %
- from XFreeAlgebra(VarSet, R)
- sample : () -> %
- from AbelianMonoid
- sh : (%, %) -> %
- from XFreeAlgebra(VarSet, R)
- sh : (%, NonNegativeInteger) -> %
- from XFreeAlgebra(VarSet, R)
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(PoincareBirkhoffWittLyndonBasis(VarSet))
- from FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
- trunc : (%, NonNegativeInteger) -> %
- from XPolynomialsCat(VarSet, R)
- varList : % -> List(VarSet)
- from XFreeAlgebra(VarSet, R)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
CoercibleFrom(R)
Algebra(R)
XAlgebra(R)
Monoid
AbelianMonoid
BiModule(R, R)
XFreeAlgebra(VarSet, R)
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
BiModule(%, %)
LeftModule(R)
noZeroDivisors
LeftModule(%)
RetractableTo(FreeMonoid(VarSet))
SetCategory
CoercibleFrom(FreeMonoid(VarSet))
Rng
IndexedDirectProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
Magma
XPolynomialsCat(VarSet, R)
SemiGroup
SemiRing
IndexedProductCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
RightModule(%)
FreeModuleCategory(R, PoincareBirkhoffWittLyndonBasis(VarSet))
AbelianProductCategory(R)
Module(R)
RightModule(R)
RetractableTo(R)
NonAssociativeRng
unitsKnown
Ring
SemiRng
NonAssociativeSemiRng
BasicType