LiePolynomial(VarSet, R)

xlpoly.spad line 449 [edit on github]

This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by C. Reutenauer (Oxford science publications). Author: Michel Petitot (petitot@lifl.fr).

* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
/ : (%, R) -> % if R has Field
from LieAlgebra(R)
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
LiePoly : LyndonWord(VarSet) -> %
from FreeLieAlgebra(VarSet, R)
LiePolyIfCan : XDistributedPolynomial(VarSet, R) -> Union(%, "failed")

LiePolyIfCan(p) returns p in Lyndon basis if p is a Lie polynomial, otherwise "failed" is returned.

coef : (XRecursivePolynomial(VarSet, R), %) -> R
from FreeLieAlgebra(VarSet, R)
coefficient : (%, LyndonWord(VarSet)) -> R
from FreeModuleCategory(R, LyndonWord(VarSet))
coefficients : % -> List(R)
from FreeModuleCategory(R, LyndonWord(VarSet))
coerce : VarSet -> %
from FreeLieAlgebra(VarSet, R)
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
coerce : % -> XDistributedPolynomial(VarSet, R)
from FreeLieAlgebra(VarSet, R)
coerce : % -> XRecursivePolynomial(VarSet, R)
from FreeLieAlgebra(VarSet, R)
construct : (%, %) -> %
from LieAlgebra(R)
construct : (%, LyndonWord(VarSet)) -> %

construct(x, y) returns the Lie bracket [x, y].

construct : List(Record(k : LyndonWord(VarSet), c : R)) -> %
from IndexedProductCategory(R, LyndonWord(VarSet))
construct : (LyndonWord(VarSet), %) -> %

construct(x, y) returns the Lie bracket [x, y].

construct : (LyndonWord(VarSet), LyndonWord(VarSet)) -> %

construct(x, y) returns the Lie bracket [x, y].

constructOrdered : List(Record(k : LyndonWord(VarSet), c : R)) -> %
from IndexedProductCategory(R, LyndonWord(VarSet))
degree : % -> NonNegativeInteger
from FreeLieAlgebra(VarSet, R)
eval : (%, VarSet, %) -> %
from FreeLieAlgebra(VarSet, R)
eval : (%, List(VarSet), List(%)) -> %
from FreeLieAlgebra(VarSet, R)
latex : % -> String
from SetCategory
leadingCoefficient : % -> R
from IndexedProductCategory(R, LyndonWord(VarSet))
leadingMonomial : % -> %
from IndexedProductCategory(R, LyndonWord(VarSet))
leadingSupport : % -> LyndonWord(VarSet)
from IndexedProductCategory(R, LyndonWord(VarSet))
leadingTerm : % -> Record(k : LyndonWord(VarSet), c : R)
from IndexedProductCategory(R, LyndonWord(VarSet))
linearExtend : (Mapping(R, LyndonWord(VarSet)), %) -> R
from FreeModuleCategory(R, LyndonWord(VarSet))
listOfTerms : % -> List(Record(k : LyndonWord(VarSet), c : R))
from IndexedDirectProductCategory(R, LyndonWord(VarSet))
lquo : (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
from FreeLieAlgebra(VarSet, R)
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, LyndonWord(VarSet))
mirror : % -> %
from FreeLieAlgebra(VarSet, R)
monomial : (R, LyndonWord(VarSet)) -> %
from IndexedProductCategory(R, LyndonWord(VarSet))
monomial? : % -> Boolean
from IndexedProductCategory(R, LyndonWord(VarSet))
monomials : % -> List(%)
from FreeModuleCategory(R, LyndonWord(VarSet))
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, LyndonWord(VarSet))
opposite? : (%, %) -> Boolean
from AbelianMonoid
reductum : % -> %
from IndexedProductCategory(R, LyndonWord(VarSet))
rquo : (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
from FreeLieAlgebra(VarSet, R)
sample : () -> %
from AbelianMonoid
smaller? : (%, %) -> Boolean if R has Comparable
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(LyndonWord(VarSet))
from FreeModuleCategory(R, LyndonWord(VarSet))
trunc : (%, NonNegativeInteger) -> %
from FreeLieAlgebra(VarSet, R)
varList : % -> List(VarSet)
from FreeLieAlgebra(VarSet, R)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

FreeLieAlgebra(VarSet, R)

SetCategory

BiModule(R, R)

IndexedDirectProductCategory(R, LyndonWord(VarSet))

CancellationAbelianMonoid

IndexedProductCategory(R, LyndonWord(VarSet))

LeftModule(R)

RightModule(R)

Module(R)

AbelianGroup

LieAlgebra(R)

AbelianSemiGroup

FreeModuleCategory(R, LyndonWord(VarSet))

Comparable

AbelianMonoid

BasicType

CoercibleTo(OutputForm)

AbelianProductCategory(R)