LiePolynomial(VarSet, R)
xlpoly.spad line 449
[edit on github]
This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by C
. Reutenauer (Oxford science publications). Author: Michel Petitot (petitot@lifl.fr
).
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
- from LieAlgebra(R)
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- LiePoly : LyndonWord(VarSet) -> %
- from FreeLieAlgebra(VarSet, R)
- LiePolyIfCan : XDistributedPolynomial(VarSet, R) -> Union(%, "failed")
LiePolyIfCan(p)
returns p
in Lyndon basis if p
is a Lie polynomial, otherwise "failed"
is returned.
- coef : (XRecursivePolynomial(VarSet, R), %) -> R
- from FreeLieAlgebra(VarSet, R)
- coefficient : (%, LyndonWord(VarSet)) -> R
- from FreeModuleCategory(R, LyndonWord(VarSet))
- coefficients : % -> List(R)
- from FreeModuleCategory(R, LyndonWord(VarSet))
- coerce : VarSet -> %
- from FreeLieAlgebra(VarSet, R)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- coerce : % -> XDistributedPolynomial(VarSet, R)
- from FreeLieAlgebra(VarSet, R)
- coerce : % -> XRecursivePolynomial(VarSet, R)
- from FreeLieAlgebra(VarSet, R)
- construct : (%, %) -> %
- from LieAlgebra(R)
- construct : (%, LyndonWord(VarSet)) -> %
construct(x, y)
returns the Lie bracket [x, y]
.
- construct : List(Record(k : LyndonWord(VarSet), c : R)) -> %
- from IndexedProductCategory(R, LyndonWord(VarSet))
- construct : (LyndonWord(VarSet), %) -> %
construct(x, y)
returns the Lie bracket [x, y]
.
- construct : (LyndonWord(VarSet), LyndonWord(VarSet)) -> %
construct(x, y)
returns the Lie bracket [x, y]
.
- constructOrdered : List(Record(k : LyndonWord(VarSet), c : R)) -> %
- from IndexedProductCategory(R, LyndonWord(VarSet))
- degree : % -> NonNegativeInteger
- from FreeLieAlgebra(VarSet, R)
- eval : (%, VarSet, %) -> %
- from FreeLieAlgebra(VarSet, R)
- eval : (%, List(VarSet), List(%)) -> %
- from FreeLieAlgebra(VarSet, R)
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, LyndonWord(VarSet))
- leadingMonomial : % -> %
- from IndexedProductCategory(R, LyndonWord(VarSet))
- leadingSupport : % -> LyndonWord(VarSet)
- from IndexedProductCategory(R, LyndonWord(VarSet))
- leadingTerm : % -> Record(k : LyndonWord(VarSet), c : R)
- from IndexedProductCategory(R, LyndonWord(VarSet))
- linearExtend : (Mapping(R, LyndonWord(VarSet)), %) -> R
- from FreeModuleCategory(R, LyndonWord(VarSet))
- listOfTerms : % -> List(Record(k : LyndonWord(VarSet), c : R))
- from IndexedDirectProductCategory(R, LyndonWord(VarSet))
- lquo : (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
- from FreeLieAlgebra(VarSet, R)
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, LyndonWord(VarSet))
- mirror : % -> %
- from FreeLieAlgebra(VarSet, R)
- monomial : (R, LyndonWord(VarSet)) -> %
- from IndexedProductCategory(R, LyndonWord(VarSet))
- monomial? : % -> Boolean
- from IndexedProductCategory(R, LyndonWord(VarSet))
- monomials : % -> List(%)
- from FreeModuleCategory(R, LyndonWord(VarSet))
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, LyndonWord(VarSet))
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- reductum : % -> %
- from IndexedProductCategory(R, LyndonWord(VarSet))
- rquo : (XRecursivePolynomial(VarSet, R), %) -> XRecursivePolynomial(VarSet, R)
- from FreeLieAlgebra(VarSet, R)
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(LyndonWord(VarSet))
- from FreeModuleCategory(R, LyndonWord(VarSet))
- trunc : (%, NonNegativeInteger) -> %
- from FreeLieAlgebra(VarSet, R)
- varList : % -> List(VarSet)
- from FreeLieAlgebra(VarSet, R)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
FreeLieAlgebra(VarSet, R)
SetCategory
BiModule(R, R)
IndexedDirectProductCategory(R, LyndonWord(VarSet))
CancellationAbelianMonoid
IndexedProductCategory(R, LyndonWord(VarSet))
LeftModule(R)
RightModule(R)
Module(R)
AbelianGroup
LieAlgebra(R)
AbelianSemiGroup
FreeModuleCategory(R, LyndonWord(VarSet))
Comparable
AbelianMonoid
BasicType
CoercibleTo(OutputForm)
AbelianProductCategory(R)