ModuleOperator(R, M)
opalg.spad line 1
[edit on github]
Algebra of ADDITIVE operators on a module.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> % if R has CommutativeRing
- from RightModule(R)
- * : (R, %) -> % if R has CommutativeRing
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, Integer) -> %
op^n
is undocumented
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- adjoint : % -> % if R has CommutativeRing
adjoint(op)
returns the adjoint of the operator op
.
- adjoint : (%, %) -> % if R has CommutativeRing
adjoint(op1, op2)
sets the adjoint of op1
to be op2
. op1
must be a basic operator
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : R -> %
- from Algebra(R)
- coerce : BasicOperator -> %
- from CoercibleFrom(BasicOperator)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conjug : R -> R if R has CommutativeRing
conjug(x)
should be local but conditional
- elt : (%, M) -> M
- from Eltable(M, M)
- evaluate : (%, Mapping(M, M)) -> %
evaluate(f, u +-> g u)
attaches the map g
to f
. f
must be a basic operator g
MUST be additive, i.e. g(a + b) = g(a) + g(b)
for any a
, b
in M
. This implies that g(n a) = n g(a)
for any a
in M
and integer n > 0
.
- evaluateInverse : (%, Mapping(M, M)) -> %
evaluateInverse(x, f)
is undocumented
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- makeop : (R, FreeGroup(BasicOperator)) -> %
makeop should
be local but conditional
- one? : % -> Boolean
- from MagmaWithUnit
- opeval : (BasicOperator, M) -> M
opeval should
be local but conditional
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- retract : % -> R
- from RetractableTo(R)
- retract : % -> BasicOperator
- from RetractableTo(BasicOperator)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(BasicOperator, "failed")
- from RetractableTo(BasicOperator)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
CoercibleFrom(R)
Algebra(R)
RightModule(%)
Monoid
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
CoercibleFrom(BasicOperator)
RetractableTo(R)
LeftModule(%)
LeftModule(R)
SetCategory
Rng
Magma
Eltable(M, M)
SemiGroup
BiModule(%, %)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
RetractableTo(BasicOperator)
NonAssociativeSemiRing
Module(R)
NonAssociativeRng
Ring
RightModule(R)
SemiRng
NonAssociativeSemiRng
CharacteristicZero
BasicType
SemiRing