ModuleOperator(R, M)

opalg.spad line 1 [edit on github]

Algebra of ADDITIVE operators on a module.

* : (%, %) -> %
from Magma
* : (%, R) -> % if R has CommutativeRing
from RightModule(R)
* : (R, %) -> % if R has CommutativeRing
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, Integer) -> %

op^n is undocumented

^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
adjoint : % -> % if R has CommutativeRing

adjoint(op) returns the adjoint of the operator op.

adjoint : (%, %) -> % if R has CommutativeRing

adjoint(op1, op2) sets the adjoint of op1 to be op2. op1 must be a basic operator

annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
from CharacteristicNonZero
coerce : R -> %
from Algebra(R)
coerce : BasicOperator -> %
from CoercibleFrom(BasicOperator)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
conjug : R -> R if R has CommutativeRing

conjug(x)should be local but conditional

elt : (%, M) -> M
from Eltable(M, M)
evaluate : (%, Mapping(M, M)) -> %

evaluate(f, u +-> g u) attaches the map g to f. f must be a basic operator g MUST be additive, i.e. g(a + b) = g(a) + g(b) for any a, b in M. This implies that g(n a) = n g(a) for any a in M and integer n > 0.

evaluateInverse : (%, Mapping(M, M)) -> %

evaluateInverse(x, f) is undocumented

latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
makeop : (R, FreeGroup(BasicOperator)) -> %

makeop should be local but conditional

one? : % -> Boolean
from MagmaWithUnit
opeval : (BasicOperator, M) -> M

opeval should be local but conditional

opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra(R)
recip : % -> Union(%, "failed")
from MagmaWithUnit
retract : % -> R
from RetractableTo(R)
retract : % -> BasicOperator
from RetractableTo(BasicOperator)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(BasicOperator, "failed")
from RetractableTo(BasicOperator)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CharacteristicNonZero

CoercibleFrom(R)

Algebra(R)

RightModule(%)

Monoid

AbelianMonoid

BiModule(R, R)

NonAssociativeAlgebra(R)

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

AbelianGroup

CoercibleFrom(BasicOperator)

RetractableTo(R)

LeftModule(%)

LeftModule(R)

SetCategory

Rng

Magma

Eltable(M, M)

SemiGroup

BiModule(%, %)

unitsKnown

CoercibleTo(OutputForm)

AbelianSemiGroup

RetractableTo(BasicOperator)

NonAssociativeSemiRing

Module(R)

NonAssociativeRng

Ring

RightModule(R)

SemiRng

NonAssociativeSemiRng

CharacteristicZero

BasicType

SemiRing