Operator(R)

opalg.spad line 219 [edit on github]

Algebra of ADDITIVE operators over a ring.

* : (%, %) -> %
from Magma
* : (%, R) -> % if R has CommutativeRing
from RightModule(R)
* : (R, %) -> % if R has CommutativeRing
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> %
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, Integer) -> %

^ : (%, NonNegativeInteger) -> %
from MagmaWithUnit
^ : (%, PositiveInteger) -> %
from Magma
adjoint : % -> % if R has CommutativeRing

adjoint : (%, %) -> % if R has CommutativeRing

annihilate? : (%, %) -> Boolean
from Rng
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
associator : (%, %, %) -> %
from NonAssociativeRng
characteristic : () -> NonNegativeInteger
from NonAssociativeRing
charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
from CharacteristicNonZero
coerce : R -> %
from Algebra(R)
coerce : BasicOperator -> %
from CoercibleFrom(BasicOperator)
coerce : Integer -> %
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> %
from NonAssociativeRng
conjug : R -> R if R has CommutativeRing

elt : (%, R) -> R
from Eltable(R, R)
evaluate : (%, Mapping(R, R)) -> %

evaluateInverse : (%, Mapping(R, R)) -> %

latex : % -> String
from SetCategory
leftPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> %
from Magma
leftRecip : % -> Union(%, "failed")
from MagmaWithUnit
makeop : (R, FreeGroup(BasicOperator)) -> %

one? : % -> Boolean
from MagmaWithUnit
opeval : (BasicOperator, R) -> R

opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
from NonAssociativeAlgebra(R)
recip : % -> Union(%, "failed")
from MagmaWithUnit
retract : % -> R
from RetractableTo(R)
retract : % -> BasicOperator
from RetractableTo(BasicOperator)
retractIfCan : % -> Union(R, "failed")
from RetractableTo(R)
retractIfCan : % -> Union(BasicOperator, "failed")
from RetractableTo(BasicOperator)
rightPower : (%, NonNegativeInteger) -> %
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> %
from Magma
rightRecip : % -> Union(%, "failed")
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

CharacteristicNonZero

CoercibleFrom(R)

Algebra(R)

RightModule(%)

Monoid

AbelianMonoid

BiModule(R, R)

NonAssociativeAlgebra(R)

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

AbelianGroup

Eltable(R, R)

CoercibleFrom(BasicOperator)

RetractableTo(R)

LeftModule(%)

LeftModule(R)

SetCategory

Rng

Magma

SemiGroup

BiModule(%, %)

unitsKnown

CoercibleTo(OutputForm)

AbelianSemiGroup

RetractableTo(BasicOperator)

NonAssociativeSemiRing

Module(R)

NonAssociativeRng

Ring

RightModule(R)

SemiRng

NonAssociativeSemiRng

CharacteristicZero

BasicType

SemiRing