Operator(R)
opalg.spad line 219
[edit on github]
Algebra of ADDITIVE operators over a ring.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> % if R has CommutativeRing
- from RightModule(R)
- * : (R, %) -> % if R has CommutativeRing
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, Integer) -> %
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- adjoint : % -> % if R has CommutativeRing
- adjoint : (%, %) -> % if R has CommutativeRing
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coerce : R -> %
- from Algebra(R)
- coerce : BasicOperator -> %
- from CoercibleFrom(BasicOperator)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conjug : R -> R if R has CommutativeRing
- elt : (%, R) -> R
- from Eltable(R, R)
- evaluate : (%, Mapping(R, R)) -> %
- evaluateInverse : (%, Mapping(R, R)) -> %
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- makeop : (R, FreeGroup(BasicOperator)) -> %
- one? : % -> Boolean
- from MagmaWithUnit
- opeval : (BasicOperator, R) -> R
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- retract : % -> R
- from RetractableTo(R)
- retract : % -> BasicOperator
- from RetractableTo(BasicOperator)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(BasicOperator, "failed")
- from RetractableTo(BasicOperator)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
CoercibleFrom(R)
Algebra(R)
RightModule(%)
Monoid
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
Eltable(R, R)
CoercibleFrom(BasicOperator)
RetractableTo(R)
LeftModule(%)
LeftModule(R)
SetCategory
Rng
Magma
SemiGroup
BiModule(%, %)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
RetractableTo(BasicOperator)
NonAssociativeSemiRing
Module(R)
NonAssociativeRng
Ring
RightModule(R)
SemiRng
NonAssociativeSemiRng
CharacteristicZero
BasicType
SemiRing