XPolynomialRing(R, E)
xpoly.spad line 135
[edit on github]
This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring), and words belonging to an arbitrary OrderedMonoid. This type is used, for instance, by the XDistributedPolynomial domain constructor where the Monoid is free.
- # : % -> NonNegativeInteger
# p
returns the number of terms in p
.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
p*r
returns the product of p
by r
.
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- / : (%, R) -> % if R has Field
p/r
returns p*(1/r)
.
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coef : (%, E) -> R
coef(p, e)
extracts the coefficient of the monomial e
. Returns zero if e
is not present.
- coefficient : (%, E) -> R
- from FreeModuleCategory(R, E)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, E)
- coerce : E -> %
coerce(e)
returns 1*e
- coerce : R -> %
- from XAlgebra(R)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- constant : % -> R
constant(p)
return the constant term of p
.
- constant? : % -> Boolean
constant?(p)
tests whether the polynomial p
belongs to the coefficient ring.
- construct : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- constructOrdered : List(Record(k : E, c : R)) -> %
- from IndexedProductCategory(R, E)
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R
- from IndexedProductCategory(R, E)
- leadingMonomial : % -> %
- from IndexedProductCategory(R, E)
- leadingSupport : % -> E
- from IndexedProductCategory(R, E)
- leadingTerm : % -> Record(k : E, c : R)
- from IndexedProductCategory(R, E)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, E), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, E)
- listOfTerms : % -> List(Record(k : E, c : R))
- from IndexedDirectProductCategory(R, E)
- map : (Mapping(R, R), %) -> %
map(fn, x)
returns Sum(fn(r_i) w_i)
if x
writes Sum(r_i w_i)
.
- maxdeg : % -> E
maxdeg(p)
returns the greatest word occurring in the polynomial p
with a non-zero coefficient. An error is produced if p
is zero.
- mindeg : % -> E
mindeg(p)
returns the smallest word occurring in the polynomial p
with a non-zero coefficient. An error is produced if p
is zero.
- monomial : (R, E) -> %
- from IndexedProductCategory(R, E)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, E)
- monomials : % -> List(%)
- from FreeModuleCategory(R, E)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, E)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- quasiRegular : % -> %
quasiRegular(x)
return x
minus its constant term.
- quasiRegular? : % -> Boolean
quasiRegular?(x)
return true
if constant(p)
is zero.
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> %
reductum(p)
returns p
minus its leading term. An error is produced if p
is zero.
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(E)
- from FreeModuleCategory(R, E)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
noZeroDivisors
RightModule(%)
Monoid
BiModule(R, R)
Algebra(R)
AbelianMonoid
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
IndexedProductCategory(R, E)
LeftModule(%)
LeftModule(R)
canonicalUnitNormal
SetCategory
IndexedDirectProductCategory(R, E)
Rng
FreeModuleCategory(R, E)
SemiGroup
Magma
XAlgebra(R)
BiModule(%, %)
unitsKnown
CoercibleTo(OutputForm)
AbelianSemiGroup
NonAssociativeSemiRing
AbelianProductCategory(R)
Module(R)
RightModule(R)
NonAssociativeRng
Ring
SemiRng
NonAssociativeSemiRng
BasicType
SemiRing