AssociatedLieAlgebra(R, A)

lie.spad line 1 [edit on github]

AssociatedLieAlgebra takes an algebra A and uses *$A to define the Lie bracket a*b := (a *$A b - b *$A a) (commutator). Note that the notation [a, b] cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity (a*b)*c + (b*c)*a + (c*a)*b = 0 holds for all a, b, c in A. This relation can be checked by lieAdmissible?()$A. If the underlying algebra is of type FramedNonAssociativeAlgebra(R) (i.e. a non associative algebra over R which is a free R-module of finite rank, together with a fixed R-module basis), then the same is true for the associated Lie algebra. Also, if the underlying algebra is of type FiniteRankNonAssociativeAlgebra(R) (i.e. a non associative algebra over R which is a free R-module of finite rank), then the same is true for the associated Lie algebra.

* : (%, %) -> %
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
= : (%, %) -> Boolean
from BasicType
^ : (%, PositiveInteger) -> %
from Magma
alternative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
antiAssociative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
antiCommutative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
antiCommutator : (%, %) -> %
from NonAssociativeSemiRng
apply : (Matrix(R), %) -> % if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
associative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
associator : (%, %, %) -> %
from NonAssociativeRng
associatorDependence : () -> List(Vector(R)) if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
basis : () -> Vector(%) if A has FramedNonAssociativeAlgebra(R)
from FramedModule(R)
coerce : A -> %

coerce(a) coerces the element a of the algebra A to an element of the Lie algebra AssociatedLieAlgebra(R, A).

coerce : % -> A
from CoercibleTo(A)
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
commutator : (%, %) -> %
from NonAssociativeRng
conditionsForIdempotents : () -> List(Polynomial(R)) if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
conditionsForIdempotents : Vector(%) -> List(Polynomial(R)) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
convert : Vector(R) -> % if A has FramedNonAssociativeAlgebra(R)
from FramedModule(R)
convert : % -> InputForm if A has FramedNonAssociativeAlgebra(R) and R has Finite
from ConvertibleTo(InputForm)
convert : % -> Vector(R) if A has FramedNonAssociativeAlgebra(R)
from FramedModule(R)
coordinates : Vector(%) -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
from FramedModule(R)
coordinates : (Vector(%), Vector(%)) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
coordinates : % -> Vector(R) if A has FramedNonAssociativeAlgebra(R)
from FramedModule(R)
coordinates : (%, Vector(%)) -> Vector(R) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
elt : (%, Integer) -> R if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
enumerate : () -> List(%) if A has FramedNonAssociativeAlgebra(R) and R has Finite
from Finite
flexible? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
hash : % -> SingleInteger if A has FramedNonAssociativeAlgebra(R) and R has Hashable
from Hashable
hashUpdate! : (HashState, %) -> HashState if A has FramedNonAssociativeAlgebra(R) and R has Hashable
from Hashable
index : PositiveInteger -> % if A has FramedNonAssociativeAlgebra(R) and R has Finite
from Finite
jacobiIdentity? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
jordanAdmissible? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
jordanAlgebra? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
latex : % -> String
from SetCategory
leftAlternative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftDiscriminant : () -> R if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
leftDiscriminant : Vector(%) -> R if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftNorm : % -> R if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftPower : (%, PositiveInteger) -> %
from Magma
leftRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if A has FramedNonAssociativeAlgebra(R) and R has Field
from FramedNonAssociativeAlgebra(R)
leftRecip : % -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftRegularRepresentation : % -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
leftRegularRepresentation : (%, Vector(%)) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftTrace : % -> R if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftTraceMatrix : () -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
leftTraceMatrix : Vector(%) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftUnit : () -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
leftUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
lieAdmissible? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
lieAlgebra? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
lookup : % -> PositiveInteger if A has FramedNonAssociativeAlgebra(R) and R has Finite
from Finite
noncommutativeJordanAlgebra? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> %
from NonAssociativeAlgebra(R)
powerAssociative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
random : () -> % if A has FramedNonAssociativeAlgebra(R) and R has Finite
from Finite
rank : () -> PositiveInteger if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
recip : % -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
represents : Vector(R) -> % if A has FramedNonAssociativeAlgebra(R)
from FramedModule(R)
represents : (Vector(R), Vector(%)) -> % if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightAlternative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightDiscriminant : () -> R if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
rightDiscriminant : Vector(%) -> R if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightNorm : % -> R if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightPower : (%, PositiveInteger) -> %
from Magma
rightRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if A has FramedNonAssociativeAlgebra(R) and R has Field
from FramedNonAssociativeAlgebra(R)
rightRecip : % -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightRegularRepresentation : % -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
rightRegularRepresentation : (%, Vector(%)) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightTrace : % -> R if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightTraceMatrix : () -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
rightTraceMatrix : Vector(%) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightUnit : () -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
rightUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
sample : () -> %
from AbelianMonoid
size : () -> NonNegativeInteger if A has FramedNonAssociativeAlgebra(R) and R has Finite
from Finite
smaller? : (%, %) -> Boolean if A has FramedNonAssociativeAlgebra(R) and R has Finite
from Comparable
someBasis : () -> Vector(%) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
structuralConstants : () -> Vector(Matrix(R)) if A has FramedNonAssociativeAlgebra(R)
from FramedNonAssociativeAlgebra(R)
structuralConstants : Vector(%) -> Vector(Matrix(R)) if A has FiniteRankNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
unit : () -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
from FiniteRankNonAssociativeAlgebra(R)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

ConvertibleTo(InputForm)

FiniteRankNonAssociativeAlgebra(R)

AbelianMonoid

BiModule(R, R)

NonAssociativeAlgebra(R)

CancellationAbelianMonoid

unitsKnown

AbelianGroup

LeftModule(R)

SetCategory

FramedModule(R)

Magma

CoercibleTo(A)

CoercibleTo(OutputForm)

AbelianSemiGroup

FramedNonAssociativeAlgebra(R)

Module(R)

RightModule(R)

NonAssociativeRng

NonAssociativeSemiRng

Hashable

Finite

BasicType