AssociatedLieAlgebra(R, A)
lie.spad line 1
[edit on github]
AssociatedLieAlgebra takes an algebra A
and uses *$A to define the Lie bracket a*b := (a *$A b - b *$A a)
(commutator). Note that the notation [a, b]
cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity (a*b)*c + (b*c)*a + (c*a)*b = 0
holds for all a
, b
, c
in A
. This relation can be checked by lieAdmissible?()$A
. If the underlying algebra is of type FramedNonAssociativeAlgebra(R) (i.e. a non associative algebra over R
which is a free R
-module of finite rank, together with a fixed R
-module basis), then the same is true
for the associated Lie algebra. Also, if the underlying algebra is of type FiniteRankNonAssociativeAlgebra(R) (i.e. a non associative algebra over R
which is a free R
-module of finite rank), then the same is true
for the associated Lie algebra.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, PositiveInteger) -> %
- from Magma
- alternative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- antiAssociative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- antiCommutative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- apply : (Matrix(R), %) -> % if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- associative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- associator : (%, %, %) -> %
- from NonAssociativeRng
- associatorDependence : () -> List(Vector(R)) if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- basis : () -> Vector(%) if A has FramedNonAssociativeAlgebra(R)
- from FramedModule(R)
- coerce : A -> %
coerce(a)
coerces the element a
of the algebra A
to an element of the Lie algebra AssociatedLieAlgebra(R
, A).
- coerce : % -> A
- from CoercibleTo(A)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- commutator : (%, %) -> %
- from NonAssociativeRng
- conditionsForIdempotents : () -> List(Polynomial(R)) if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- conditionsForIdempotents : Vector(%) -> List(Polynomial(R)) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- convert : Vector(R) -> % if A has FramedNonAssociativeAlgebra(R)
- from FramedModule(R)
- convert : % -> InputForm if A has FramedNonAssociativeAlgebra(R) and R has Finite
- from ConvertibleTo(InputForm)
- convert : % -> Vector(R) if A has FramedNonAssociativeAlgebra(R)
- from FramedModule(R)
- coordinates : Vector(%) -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
- from FramedModule(R)
- coordinates : (Vector(%), Vector(%)) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- coordinates : % -> Vector(R) if A has FramedNonAssociativeAlgebra(R)
- from FramedModule(R)
- coordinates : (%, Vector(%)) -> Vector(R) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- elt : (%, Integer) -> R if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- enumerate : () -> List(%) if A has FramedNonAssociativeAlgebra(R) and R has Finite
- from Finite
- flexible? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- hash : % -> SingleInteger if A has FramedNonAssociativeAlgebra(R) and R has Hashable
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if A has FramedNonAssociativeAlgebra(R) and R has Hashable
- from Hashable
- index : PositiveInteger -> % if A has FramedNonAssociativeAlgebra(R) and R has Finite
- from Finite
- jacobiIdentity? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- jordanAdmissible? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- jordanAlgebra? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- latex : % -> String
- from SetCategory
- leftAlternative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftDiscriminant : () -> R if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- leftDiscriminant : Vector(%) -> R if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftNorm : % -> R if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if A has FramedNonAssociativeAlgebra(R) and R has Field
- from FramedNonAssociativeAlgebra(R)
- leftRecip : % -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftRegularRepresentation : % -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- leftRegularRepresentation : (%, Vector(%)) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftTrace : % -> R if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftTraceMatrix : () -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- leftTraceMatrix : Vector(%) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftUnit : () -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- leftUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- lieAdmissible? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- lieAlgebra? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- lookup : % -> PositiveInteger if A has FramedNonAssociativeAlgebra(R) and R has Finite
- from Finite
- noncommutativeJordanAlgebra? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- powerAssociative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- random : () -> % if A has FramedNonAssociativeAlgebra(R) and R has Finite
- from Finite
- rank : () -> PositiveInteger if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- recip : % -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- represents : Vector(R) -> % if A has FramedNonAssociativeAlgebra(R)
- from FramedModule(R)
- represents : (Vector(R), Vector(%)) -> % if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightAlternative? : () -> Boolean if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightCharacteristicPolynomial : % -> SparseUnivariatePolynomial(R) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightDiscriminant : () -> R if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- rightDiscriminant : Vector(%) -> R if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightMinimalPolynomial : % -> SparseUnivariatePolynomial(R) if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightNorm : % -> R if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRankPolynomial : () -> SparseUnivariatePolynomial(Polynomial(R)) if A has FramedNonAssociativeAlgebra(R) and R has Field
- from FramedNonAssociativeAlgebra(R)
- rightRecip : % -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightRegularRepresentation : % -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- rightRegularRepresentation : (%, Vector(%)) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightTrace : % -> R if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightTraceMatrix : () -> Matrix(R) if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- rightTraceMatrix : Vector(%) -> Matrix(R) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightUnit : () -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- rightUnits : () -> Union(Record(particular : %, basis : List(%)), "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if A has FramedNonAssociativeAlgebra(R) and R has Finite
- from Finite
- smaller? : (%, %) -> Boolean if A has FramedNonAssociativeAlgebra(R) and R has Finite
- from Comparable
- someBasis : () -> Vector(%) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- structuralConstants : () -> Vector(Matrix(R)) if A has FramedNonAssociativeAlgebra(R)
- from FramedNonAssociativeAlgebra(R)
- structuralConstants : Vector(%) -> Vector(Matrix(R)) if A has FiniteRankNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- unit : () -> Union(%, "failed") if A has FiniteRankNonAssociativeAlgebra(R) and R has IntegralDomain or R has IntegralDomain and A has FramedNonAssociativeAlgebra(R)
- from FiniteRankNonAssociativeAlgebra(R)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
ConvertibleTo(InputForm)
FiniteRankNonAssociativeAlgebra(R)
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
unitsKnown
AbelianGroup
LeftModule(R)
SetCategory
FramedModule(R)
Magma
CoercibleTo(A)
CoercibleTo(OutputForm)
AbelianSemiGroup
FramedNonAssociativeAlgebra(R)
Module(R)
RightModule(R)
NonAssociativeRng
NonAssociativeSemiRng
Hashable
Finite
BasicType