MonoidRing(R, M)
mring.spad line 33
[edit on github]
MonoidRing(R
, M
), implements the algebra of all maps from the monoid M
to the commutative ring R
with finite support. Multiplication of two maps f
and g
is defined to map an element c
of M
to the (convolution) sum over f(a)g(b) such that ab = c. Thus M
can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in M
. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When M
is FreeMonoid Symbol, one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups G
, where modules over MonoidRing(R
, G
) are studied.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- associator : (%, %, %) -> %
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- charthRoot : % -> Union(%, "failed") if R has CharacteristicNonZero
- from CharacteristicNonZero
- coefficient : (%, M) -> R
- from FreeModuleCategory(R, M)
- coefficients : % -> List(R)
- from FreeModuleCategory(R, M)
- coerce : % -> % if R has CommutativeRing and M has CommutativeStar
- from Algebra(%)
- coerce : M -> %
- from CoercibleFrom(M)
- coerce : R -> %
- from Algebra(R)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : List(Record(k : M, c : R)) -> %
- from MonoidRingCategory(R, M)
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- construct : List(Record(k : M, c : R)) -> %
- from IndexedProductCategory(R, M)
- constructOrdered : List(Record(k : M, c : R)) -> % if M has Comparable
- from IndexedProductCategory(R, M)
- convert : % -> InputForm if M has Finite and R has Finite
- from ConvertibleTo(InputForm)
- enumerate : () -> List(%) if M has Finite and R has Finite
- from Finite
- hash : % -> SingleInteger if M has Finite and R has Finite
- from Hashable
- hashUpdate! : (HashState, %) -> HashState if M has Finite and R has Finite
- from Hashable
- index : PositiveInteger -> % if M has Finite and R has Finite
- from Finite
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R if M has Comparable
- from IndexedProductCategory(R, M)
- leadingMonomial : % -> % if M has Comparable
- from IndexedProductCategory(R, M)
- leadingSupport : % -> M if M has Comparable
- from IndexedProductCategory(R, M)
- leadingTerm : % -> Record(k : M, c : R) if M has Comparable
- from IndexedProductCategory(R, M)
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- linearExtend : (Mapping(R, M), %) -> R if R has CommutativeRing
- from FreeModuleCategory(R, M)
- listOfTerms : % -> List(Record(k : M, c : R))
- from IndexedDirectProductCategory(R, M)
- lookup : % -> PositiveInteger if M has Finite and R has Finite
- from Finite
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, M)
- monomial : (R, M) -> %
- from IndexedProductCategory(R, M)
- monomial? : % -> Boolean
- from IndexedProductCategory(R, M)
- monomials : % -> List(%)
- from FreeModuleCategory(R, M)
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, M)
- one? : % -> Boolean
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if R has CommutativeRing
- from NonAssociativeAlgebra(R)
- random : () -> % if M has Finite and R has Finite
- from Finite
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- reductum : % -> % if M has Comparable
- from IndexedProductCategory(R, M)
- retract : % -> M
- from RetractableTo(M)
- retract : % -> R
- from RetractableTo(R)
- retractIfCan : % -> Union(M, "failed")
- from RetractableTo(M)
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- size : () -> NonNegativeInteger if M has Finite and R has Finite
- from Finite
- smaller? : (%, %) -> Boolean if M has Finite and R has Finite or R has Comparable and M has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(M)
- from FreeModuleCategory(R, M)
- terms : % -> List(Record(k : M, c : R))
- from MonoidRingCategory(R, M)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
CharacteristicNonZero
Comparable
ConvertibleTo(InputForm)
CoercibleFrom(R)
Algebra(R)
RightModule(%)
Monoid
Algebra(%)
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(R)
FreeModuleCategory(R, M)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
RightModule(R)
BiModule(%, %)
LeftModule(%)
LeftModule(R)
Module(%)
SetCategory
RetractableTo(M)
IndexedProductCategory(R, M)
Rng
CommutativeRing
TwoSidedRecip
Magma
CoercibleFrom(M)
SemiGroup
IndexedDirectProductCategory(R, M)
CoercibleTo(OutputForm)
AbelianSemiGroup
CommutativeStar
NonAssociativeSemiRing
NonAssociativeAlgebra(%)
MonoidRingCategory(R, M)
AbelianProductCategory(R)
Module(R)
CharacteristicZero
RetractableTo(R)
NonAssociativeRng
unitsKnown
Ring
SemiRng
AbelianGroup
NonAssociativeSemiRng
Hashable
Finite
BasicType
SemiRing