TensorPower(n, R, B, M)
tensor.spad line 310
[edit on github]
Tensor powers of a free module over a commutative ring. It is represented as a free module over the cartesian power of the basis.
- * : (%, %) -> % if M has Algebra(R)
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> % if M has Algebra(R)
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- ^ : (%, NonNegativeInteger) -> % if M has Algebra(R)
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> % if M has Algebra(R)
- from Magma
- annihilate? : (%, %) -> Boolean if M has Algebra(R)
- from Rng
- antiCommutator : (%, %) -> % if M has Algebra(R)
- from NonAssociativeSemiRng
- associator : (%, %, %) -> % if M has Algebra(R)
- from NonAssociativeRng
- characteristic : () -> NonNegativeInteger if M has Algebra(R)
- from NonAssociativeRing
- coefficient : (%, Vector(B)) -> R
- from FreeModuleCategory(R, Vector(B))
- coefficients : % -> List(R)
- from FreeModuleCategory(R, Vector(B))
- coerce : R -> % if M has Algebra(R)
- from Algebra(R)
- coerce : Integer -> % if M has Algebra(R)
- from NonAssociativeRing
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> % if M has Algebra(R)
- from NonAssociativeRng
- construct : List(Record(k : Vector(B), c : R)) -> %
- from IndexedProductCategory(R, Vector(B))
- constructOrdered : List(Record(k : Vector(B), c : R)) -> % if Vector(B) has Comparable
- from IndexedProductCategory(R, Vector(B))
- latex : % -> String
- from SetCategory
- leadingCoefficient : % -> R if Vector(B) has Comparable
- from IndexedProductCategory(R, Vector(B))
- leadingMonomial : % -> % if Vector(B) has Comparable
- from IndexedProductCategory(R, Vector(B))
- leadingSupport : % -> Vector(B) if Vector(B) has Comparable
- from IndexedProductCategory(R, Vector(B))
- leadingTerm : % -> Record(k : Vector(B), c : R) if Vector(B) has Comparable
- from IndexedProductCategory(R, Vector(B))
- leftPower : (%, NonNegativeInteger) -> % if M has Algebra(R)
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> % if M has Algebra(R)
- from Magma
- leftRecip : % -> Union(%, "failed") if M has Algebra(R)
- from MagmaWithUnit
- linearExtend : (Mapping(R, Vector(B)), %) -> R
- from FreeModuleCategory(R, Vector(B))
- listOfTerms : % -> List(Record(k : Vector(B), c : R))
- from IndexedDirectProductCategory(R, Vector(B))
- map : (Mapping(R, R), %) -> %
- from IndexedProductCategory(R, Vector(B))
- monomial : (R, Vector(B)) -> %
- from IndexedProductCategory(R, Vector(B))
- monomial? : % -> Boolean
- from IndexedProductCategory(R, Vector(B))
- monomials : % -> List(%)
- from FreeModuleCategory(R, Vector(B))
- numberOfMonomials : % -> NonNegativeInteger
- from IndexedDirectProductCategory(R, Vector(B))
- one? : % -> Boolean if M has Algebra(R)
- from MagmaWithUnit
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- plenaryPower : (%, PositiveInteger) -> % if M has Algebra(R)
- from NonAssociativeAlgebra(R)
- recip : % -> Union(%, "failed") if M has Algebra(R)
- from MagmaWithUnit
- reductum : % -> % if Vector(B) has Comparable
- from IndexedProductCategory(R, Vector(B))
- rightPower : (%, NonNegativeInteger) -> % if M has Algebra(R)
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> % if M has Algebra(R)
- from Magma
- rightRecip : % -> Union(%, "failed") if M has Algebra(R)
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- smaller? : (%, %) -> Boolean if R has Comparable and Vector(B) has Comparable
- from Comparable
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- support : % -> List(Vector(B))
- from FreeModuleCategory(R, Vector(B))
- tensor : (M, M) -> %
- from TensorProductCategory(R, M, M)
- tensor : List(B) -> %
- tensor : List(M) -> %
- from TensorPowerCategory(n, R, M)
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
Comparable
Algebra(R)
RightModule(%)
Monoid
IndexedProductCategory(R, Vector(B))
AbelianMonoid
BiModule(R, R)
NonAssociativeAlgebra(R)
CancellationAbelianMonoid
MagmaWithUnit
NonAssociativeRing
AbelianGroup
BiModule(%, %)
LeftModule(%)
LeftModule(R)
SetCategory
CoercibleTo(OutputForm)
TensorPowerCategory(n, R, M)
Rng
SemiGroup
Magma
FreeModuleCategory(R, Vector(B))
unitsKnown
AbelianSemiGroup
IndexedDirectProductCategory(R, Vector(B))
NonAssociativeSemiRing
AbelianProductCategory(R)
Module(R)
TensorProductCategory(R, M, M)
RightModule(R)
NonAssociativeRng
Ring
SemiRng
NonAssociativeSemiRng
BasicType
SemiRing