TensorPower(n, R, B, M)

tensor.spad line 310 [edit on github]

Tensor powers of a free module over a commutative ring. It is represented as a free module over the cartesian power of the basis.

* : (%, %) -> % if M has Algebra(R)
from Magma
* : (%, R) -> %
from RightModule(R)
* : (R, %) -> %
from LeftModule(R)
* : (Integer, %) -> %
from AbelianGroup
* : (NonNegativeInteger, %) -> %
from AbelianMonoid
* : (PositiveInteger, %) -> %
from AbelianSemiGroup
+ : (%, %) -> %
from AbelianSemiGroup
- : % -> %
from AbelianGroup
- : (%, %) -> %
from AbelianGroup
0 : () -> %
from AbelianMonoid
1 : () -> % if M has Algebra(R)
from MagmaWithUnit
= : (%, %) -> Boolean
from BasicType
^ : (%, NonNegativeInteger) -> % if M has Algebra(R)
from MagmaWithUnit
^ : (%, PositiveInteger) -> % if M has Algebra(R)
from Magma
annihilate? : (%, %) -> Boolean if M has Algebra(R)
from Rng
antiCommutator : (%, %) -> % if M has Algebra(R)
from NonAssociativeSemiRng
associator : (%, %, %) -> % if M has Algebra(R)
from NonAssociativeRng
characteristic : () -> NonNegativeInteger if M has Algebra(R)
from NonAssociativeRing
coefficient : (%, Vector(B)) -> R
from FreeModuleCategory(R, Vector(B))
coefficients : % -> List(R)
from FreeModuleCategory(R, Vector(B))
coerce : R -> % if M has Algebra(R)
from Algebra(R)
coerce : Integer -> % if M has Algebra(R)
from NonAssociativeRing
coerce : % -> OutputForm
from CoercibleTo(OutputForm)
commutator : (%, %) -> % if M has Algebra(R)
from NonAssociativeRng
construct : List(Record(k : Vector(B), c : R)) -> %
from IndexedProductCategory(R, Vector(B))
constructOrdered : List(Record(k : Vector(B), c : R)) -> % if Vector(B) has Comparable
from IndexedProductCategory(R, Vector(B))
latex : % -> String
from SetCategory
leadingCoefficient : % -> R if Vector(B) has Comparable
from IndexedProductCategory(R, Vector(B))
leadingMonomial : % -> % if Vector(B) has Comparable
from IndexedProductCategory(R, Vector(B))
leadingSupport : % -> Vector(B) if Vector(B) has Comparable
from IndexedProductCategory(R, Vector(B))
leadingTerm : % -> Record(k : Vector(B), c : R) if Vector(B) has Comparable
from IndexedProductCategory(R, Vector(B))
leftPower : (%, NonNegativeInteger) -> % if M has Algebra(R)
from MagmaWithUnit
leftPower : (%, PositiveInteger) -> % if M has Algebra(R)
from Magma
leftRecip : % -> Union(%, "failed") if M has Algebra(R)
from MagmaWithUnit
linearExtend : (Mapping(R, Vector(B)), %) -> R
from FreeModuleCategory(R, Vector(B))
listOfTerms : % -> List(Record(k : Vector(B), c : R))
from IndexedDirectProductCategory(R, Vector(B))
map : (Mapping(R, R), %) -> %
from IndexedProductCategory(R, Vector(B))
monomial : (R, Vector(B)) -> %
from IndexedProductCategory(R, Vector(B))
monomial? : % -> Boolean
from IndexedProductCategory(R, Vector(B))
monomials : % -> List(%)
from FreeModuleCategory(R, Vector(B))
numberOfMonomials : % -> NonNegativeInteger
from IndexedDirectProductCategory(R, Vector(B))
one? : % -> Boolean if M has Algebra(R)
from MagmaWithUnit
opposite? : (%, %) -> Boolean
from AbelianMonoid
plenaryPower : (%, PositiveInteger) -> % if M has Algebra(R)
from NonAssociativeAlgebra(R)
recip : % -> Union(%, "failed") if M has Algebra(R)
from MagmaWithUnit
reductum : % -> % if Vector(B) has Comparable
from IndexedProductCategory(R, Vector(B))
rightPower : (%, NonNegativeInteger) -> % if M has Algebra(R)
from MagmaWithUnit
rightPower : (%, PositiveInteger) -> % if M has Algebra(R)
from Magma
rightRecip : % -> Union(%, "failed") if M has Algebra(R)
from MagmaWithUnit
sample : () -> %
from AbelianMonoid
smaller? : (%, %) -> Boolean if R has Comparable and Vector(B) has Comparable
from Comparable
subtractIfCan : (%, %) -> Union(%, "failed")
from CancellationAbelianMonoid
support : % -> List(Vector(B))
from FreeModuleCategory(R, Vector(B))
tensor : (M, M) -> %
from TensorProductCategory(R, M, M)
tensor : List(B) -> %

tensor : List(M) -> %
from TensorPowerCategory(n, R, M)
zero? : % -> Boolean
from AbelianMonoid
~= : (%, %) -> Boolean
from BasicType

Comparable

Algebra(R)

RightModule(%)

Monoid

IndexedProductCategory(R, Vector(B))

AbelianMonoid

BiModule(R, R)

NonAssociativeAlgebra(R)

CancellationAbelianMonoid

MagmaWithUnit

NonAssociativeRing

AbelianGroup

BiModule(%, %)

LeftModule(%)

LeftModule(R)

SetCategory

CoercibleTo(OutputForm)

TensorPowerCategory(n, R, M)

Rng

SemiGroup

Magma

FreeModuleCategory(R, Vector(B))

unitsKnown

AbelianSemiGroup

IndexedDirectProductCategory(R, Vector(B))

NonAssociativeSemiRing

AbelianProductCategory(R)

Module(R)

TensorProductCategory(R, M, M)

RightModule(R)

NonAssociativeRng

Ring

SemiRng

NonAssociativeSemiRng

BasicType

SemiRing