FortranExpression(basicSymbols, subscriptedSymbols, R)
fortran.spad line 1426
[edit on github]
A domain of expressions involving functions which can be translated into standard Fortran-77, with some extra extensions from the NAG Fortran Library.
- * : (%, %) -> %
- from Magma
- * : (%, R) -> %
- from RightModule(R)
- * : (R, %) -> %
- from LeftModule(R)
- * : (Integer, %) -> %
- from AbelianGroup
- * : (NonNegativeInteger, %) -> %
- from AbelianMonoid
- * : (PositiveInteger, %) -> %
- from AbelianSemiGroup
- + : (%, %) -> %
- from AbelianSemiGroup
- - : % -> %
- from AbelianGroup
- - : (%, %) -> %
- from AbelianGroup
- 0 : () -> %
- from AbelianMonoid
- 1 : () -> %
- from MagmaWithUnit
- = : (%, %) -> Boolean
- from BasicType
- D : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- D : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- ^ : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- ^ : (%, PositiveInteger) -> %
- from Magma
- abs : % -> %
abs(x)
represents the Fortran intrinsic function ABS
- acos : % -> %
acos(x)
represents the Fortran intrinsic function ACOS
- annihilate? : (%, %) -> Boolean
- from Rng
- antiCommutator : (%, %) -> %
- from NonAssociativeSemiRng
- asin : % -> %
asin(x)
represents the Fortran intrinsic function ASIN
- associator : (%, %, %) -> %
- from NonAssociativeRng
- atan : % -> %
atan(x)
represents the Fortran intrinsic function ATAN
- belong? : BasicOperator -> Boolean
- from ExpressionSpace2(Kernel(%))
- box : % -> %
- from ExpressionSpace2(Kernel(%))
- characteristic : () -> NonNegativeInteger
- from NonAssociativeRing
- coerce : R -> %
- from Algebra(R)
- coerce : Integer -> %
- from NonAssociativeRing
- coerce : Kernel(%) -> %
- from CoercibleFrom(Kernel(%))
- coerce : % -> Expression(R)
coerce(x)
is undocumented
- coerce : % -> OutputForm
- from CoercibleTo(OutputForm)
- commutator : (%, %) -> %
- from NonAssociativeRng
- cos : % -> %
cos(x)
represents the Fortran intrinsic function COS
- cosh : % -> %
cosh(x)
represents the Fortran intrinsic function COSH
- definingPolynomial : % -> %
- from ExpressionSpace2(Kernel(%))
- differentiate : (%, List(Symbol)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol) -> %
- from PartialDifferentialRing(Symbol)
- differentiate : (%, Symbol, NonNegativeInteger) -> %
- from PartialDifferentialRing(Symbol)
- distribute : % -> %
- from ExpressionSpace2(Kernel(%))
- distribute : (%, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, %, %, %, %, %, %, %, %, %) -> %
- from ExpressionSpace2(Kernel(%))
- elt : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, %, %) -> %
- from InnerEvalable(%, %)
- eval : (%, BasicOperator, Mapping(%, %)) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, BasicOperator, Mapping(%, List(%))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Equation(%)) -> %
- from Evalable(%)
- eval : (%, Kernel(%), %) -> %
- from InnerEvalable(Kernel(%), %)
- eval : (%, List(%), List(%)) -> %
- from InnerEvalable(%, %)
- eval : (%, List(BasicOperator), List(Mapping(%, %))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(BasicOperator), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Equation(%))) -> %
- from Evalable(%)
- eval : (%, List(Kernel(%)), List(%)) -> %
- from InnerEvalable(Kernel(%), %)
- eval : (%, List(Symbol), List(Mapping(%, %))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, List(Symbol), List(Mapping(%, List(%)))) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Symbol, Mapping(%, %)) -> %
- from ExpressionSpace2(Kernel(%))
- eval : (%, Symbol, Mapping(%, List(%))) -> %
- from ExpressionSpace2(Kernel(%))
- exp : % -> %
exp(x)
represents the Fortran intrinsic function EXP
- freeOf? : (%, %) -> Boolean
- from ExpressionSpace2(Kernel(%))
- freeOf? : (%, Symbol) -> Boolean
- from ExpressionSpace2(Kernel(%))
- height : % -> NonNegativeInteger
- from ExpressionSpace2(Kernel(%))
- is? : (%, BasicOperator) -> Boolean
- from ExpressionSpace2(Kernel(%))
- is? : (%, Symbol) -> Boolean
- from ExpressionSpace2(Kernel(%))
- kernel : (BasicOperator, %) -> %
- from ExpressionSpace2(Kernel(%))
- kernel : (BasicOperator, List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- kernels : % -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- kernels : List(%) -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- latex : % -> String
- from SetCategory
- leftPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- leftPower : (%, PositiveInteger) -> %
- from Magma
- leftRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- log : % -> %
log(x)
represents the Fortran intrinsic function LOG
- log10 : % -> %
log10(x)
represents the Fortran intrinsic function LOG10
- mainKernel : % -> Union(Kernel(%), "failed")
- from ExpressionSpace2(Kernel(%))
- map : (Mapping(%, %), Kernel(%)) -> %
- from ExpressionSpace2(Kernel(%))
- minPoly : Kernel(%) -> SparseUnivariatePolynomial(%)
- from ExpressionSpace2(Kernel(%))
- one? : % -> Boolean
- from MagmaWithUnit
- operator : BasicOperator -> BasicOperator
- from ExpressionSpace2(Kernel(%))
- operators : % -> List(BasicOperator)
- from ExpressionSpace2(Kernel(%))
- opposite? : (%, %) -> Boolean
- from AbelianMonoid
- paren : % -> %
- from ExpressionSpace2(Kernel(%))
- pi : () -> %
pi
(x)
represents the NAG Library function X01AAF which returns an approximation to the value of pi
- plenaryPower : (%, PositiveInteger) -> %
- from NonAssociativeAlgebra(R)
- recip : % -> Union(%, "failed")
- from MagmaWithUnit
- retract : Expression(R) -> %
retract(e)
takes e
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract : Expression(Float) -> % if R has RetractableTo(Float)
retract(e)
takes e
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract : Expression(Integer) -> %
retract(e)
takes e
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract : Fraction(Polynomial(Float)) -> % if R has RetractableTo(Float)
retract(e)
takes e
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract : Fraction(Polynomial(Integer)) -> %
retract(e)
takes e
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract : Polynomial(Float) -> % if R has RetractableTo(Float)
retract(e)
takes e
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract : Polynomial(Integer) -> %
retract(e)
takes e
and transforms it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retract : Symbol -> %
retract(e)
takes e
and transforms it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.
- retract : % -> R
- from RetractableTo(R)
- retract : % -> Kernel(%)
- from RetractableTo(Kernel(%))
- retractIfCan : Expression(R) -> Union(%, "failed")
retractIfCan(e)
takes e
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan : Expression(Float) -> Union(%, "failed") if R has RetractableTo(Float)
retractIfCan(e)
takes e
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan : Expression(Integer) -> Union(%, "failed")
retractIfCan(e)
takes e
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan : Fraction(Polynomial(Float)) -> Union(%, "failed") if R has RetractableTo(Float)
retractIfCan(e)
takes e
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan : Fraction(Polynomial(Integer)) -> Union(%, "failed")
retractIfCan(e)
takes e
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan : Polynomial(Float) -> Union(%, "failed") if R has RetractableTo(Float)
retractIfCan(e)
takes e
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan : Polynomial(Integer) -> Union(%, "failed")
retractIfCan(e)
takes e
and tries to transform it into a FortranExpression checking that it contains no non-Fortran functions, and that it only contains the given basic symbols and subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan : Symbol -> Union(%, "failed")
retractIfCan(e)
takes e
and tries to transform it into a FortranExpression checking that it is one of the given basic symbols or subscripted symbols which correspond to scalar and array parameters respectively.
- retractIfCan : % -> Union(R, "failed")
- from RetractableTo(R)
- retractIfCan : % -> Union(Kernel(%), "failed")
- from RetractableTo(Kernel(%))
- rightPower : (%, NonNegativeInteger) -> %
- from MagmaWithUnit
- rightPower : (%, PositiveInteger) -> %
- from Magma
- rightRecip : % -> Union(%, "failed")
- from MagmaWithUnit
- sample : () -> %
- from AbelianMonoid
- sin : % -> %
sin(x)
represents the Fortran intrinsic function SIN
- sinh : % -> %
sinh(x)
represents the Fortran intrinsic function SINH
- smaller? : (%, %) -> Boolean
- from Comparable
- sqrt : % -> %
sqrt(x)
represents the Fortran intrinsic function SQRT
- subst : (%, Equation(%)) -> %
- from ExpressionSpace2(Kernel(%))
- subst : (%, List(Equation(%))) -> %
- from ExpressionSpace2(Kernel(%))
- subst : (%, List(Kernel(%)), List(%)) -> %
- from ExpressionSpace2(Kernel(%))
- subtractIfCan : (%, %) -> Union(%, "failed")
- from CancellationAbelianMonoid
- tan : % -> %
tan(x)
represents the Fortran intrinsic function TAN
- tanh : % -> %
tanh(x)
represents the Fortran intrinsic function TANH
- tower : % -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- tower : List(%) -> List(Kernel(%))
- from ExpressionSpace2(Kernel(%))
- variables : % -> List(Symbol)
variables(e)
return a list of all the variables in e
.
- zero? : % -> Boolean
- from AbelianMonoid
- ~= : (%, %) -> Boolean
- from BasicType
NonAssociativeSemiRing
RetractableTo(R)
LeftModule(R)
BiModule(%, %)
Rng
BiModule(R, R)
SemiRing
unitsKnown
CoercibleFrom(R)
Magma
SemiGroup
RightModule(R)
LeftModule(%)
NonAssociativeRing
ExpressionSpace2(Kernel(%))
PartialDifferentialRing(Symbol)
RetractableTo(Kernel(%))
Module(R)
Algebra(R)
NonAssociativeSemiRng
CancellationAbelianMonoid
Comparable
AbelianMonoid
MagmaWithUnit
RightModule(%)
CoercibleFrom(Kernel(%))
CoercibleTo(OutputForm)
SemiRng
Monoid
BasicType
Ring
InnerEvalable(Kernel(%), %)
ExpressionSpace
AbelianSemiGroup
SetCategory
InnerEvalable(%, %)
NonAssociativeRng
Evalable(%)
AbelianGroup
NonAssociativeAlgebra(R)